

Observations about Balloons

Balloons 2

Balloons 4

Balloons 6

- Balloons are held taut by the gases inside
- Some balloon float in air while others don't
- Hot-air balloons don't have to be sealed
- Helium balloons leak even when sealed

5 Questions about Balloons

- 1. How does air inflate a rubber balloon?
- 2. Why doesn't the atmosphere fall or collapse?
- 3. Why does the atmosphere push up on a balloon?
- 4. Why does a hot air balloon float in cold air?
- 5. Why does a helium balloon float in air?

Question 1

Q: How does air inflate a rubber balloon?

A: Its pressure pushes the balloon's skin outward

- Air is a gas: individual atoms and molecules
- Air has pressure: it exerts a force on a surface
- Pressure inside a balloon is greater than outside
 - Total pressure forces on balloon skin are outward
 - Balloon is held taut by those outward pressure forces

Balloons 5

Balloons 3

Air and Pressure

- Air consists of individual atoms and molecules
 - Thermal energy keeps them separate and in motion
 - Air particles bounce around in free fall, like tiny balls
- Air particles transfer momentum as they bounce
 - Each momentum transfer involves tiny forces
 - A surface exposed to air experiences a force
 - The force on a surface is proportional to its area
 - The force per area is the air's pressure

Pressure Imbalances

- Balanced pressures exert no overall force
 - Pressure forces on two sides of a surface are balanced
 - Overall pressure force on that surface is zero
- Unbalanced pressures exert an overall force
 - Pressure forces on two sides of a surface don't balance
 - Overall pressure force on that surface is non-zero
 - Imbalance pushes surface toward the lower pressure
- Unbalanced pressures affect the air itself
- The air is pushed toward lower pressure

Question 2

Q: Why doesn't the atmosphere fall or collapse? A: A gradient in its pressure supports its weight

- Air has a <u>density</u>: it has mass per volume
- Air's pressure is proportional to its density
- Air's density gives it a weight per volume
- The atmosphere is in equilibrium
 - Its density and pressure decrease with altitude
 - The resulting pressure imbalances support its weight

Balloons 8 Air and Density Squeezing air particles more closely together increases the air's density: its mass per volume increases the air's pressure: its force per area increases the air's weight per volume

Question 3

Q: Why does the atmosphere push up on a balloon? A: Its pressure gradient pushes the balloon upward

- Because of atmospheric structure, air pressure is
 - stronger near the bottom of a balloon,
 - weaker near the top of the balloon,

Balloons 10

Balloons 12

- so the air pushes up harder than it pushes down,
- and this imbalance yields an upward buoyant force
- The atmosphere pushes upward on the balloon!

Balloons 11

Archimedes' Principle

A balloon immersed in a fluid experience an upward buoyant force equal to the weight of the fluid it displaces

Question 4

Q: Why does a hot air balloon float in cold air?

- A: It weighs less than the air it displaces
- As the temperature of air increases, its particles
 move faster, bounce harder, and bounce more often

 - contribute more to air's pressure
- A balloon filled with hot air at ordinary pressure
 - contains fewer particles than the air it displaces
 - weighs less than the air it displaces
 - experiences a buoyant force that exceeds its weight

An Aside About Temperature

- Air's temperature on a conventional scale is
 related to average thermal kinetic energy per particle
- Air's temperature on an absolute scale is
 proportional to average thermal kinetic energy per part.
- SI unit of absolute temperature: kelvins or K
 - \blacksquare 0 K is absolute zero: no thermal energy available
 - Step size: 1 K step same as 1 °C step
 - Room temperature is approximately 300 K

Air and Temperature

- Air pressure is proportional to abs. temperature
 - Faster particles hit surface harder and more often
 - Hotter air \rightarrow more pressure

Balloons 14

Balloons 16

Balloons 18

Balloons 15

Question 5

Q: Why does a helium balloon float in air? A: It weighs less than the air it displaces

Pressure and Particle Density

- A volume of gas has some number of particles
- The average number of gas particles per unit of volume is called the gas's "particle density"
- All gas particles contribute equally to pressure
 - lower-mass particles travel faster and bounce more,
 - so all the effects of particle mass cancel out
- Gases with equal particle densities and equal temperatures have equal pressures

Balloons 17

Helium vs. Air

- A helium atom has less mass than an air particle
- At the same temperature, a helium balloon has
 - the same pressure as an air balloon,
 - the same particle density as an air balloon,
 - and therefore less mass than an air balloon

Helium Balloon in Air

- A rubber balloon filled with helium
 - has same particle density as air,
 - weighs less than the air it displaces,
 - experiences an upward net force in air,
 - and floats in air
- Balloon's average density < room air's density

Balloons 21

The Ideal Gas Law

- is a summary relationship for gases: pressure = Boltzmann constant · particle density · absolute temperature
- It assumes perfectly independent particles
- While real gas particles aren't perfectly independent, this law is a good approximation for real gases.

Summary about Balloons

Balloons 20

Balloons 22

Balloons 24

- A balloon will float if its average density is less than that of the surrounding air
- A hot-air balloon has a lower particle density and a lower density than the surrounding air
- A helium balloon has the same particle density but a lower density than the surrounding air

Water Distribution

Observations about Water Distribution

- Water is pressurized in the pipes
- Higher pressure water can spray harder
- Higher pressure water can spray higher
- Water is often stored high up in water towers

Turn off all electronic devices

Balloons 23

4 Questions about Water Distr.

- Why does water move through level pipes?
- How can you produce pressurized water?
- Where does the work you do pumping water go?
- As water flows, what happens to its energy?

Question 1

Why does water move through level pipes?

Pressurizing Water

- To pressurize water, confine it and squeeze
 - As you push inward on the water,
 - it pushes outward on you (Newton's third law).
 - Water's outward push is produced by its pressure,
 - so the water's pressure rises as you squeeze it harder.

Pumping Water (no gravity)

Balloons 28

Balloons 30

- To deliver pressurized water to a pipe,
 - squeeze water to increase its pressure
 - until that pressure exceeds the pressure in the pipe.
 - The water will then accelerate toward the pipe
 - and pressurized water will flow into the pipe!

Balloons 29

Balloons 27

Pumping Requires Work

- You do work as you pump water into the pipe
 - You squeeze the water inward the force,
 - and the water moves inward the distance.
 - In this case, the work you do is:
 - work = pressure \cdot volume
- The pressurized water carries your work with it
- We'll call this work "pressure potential energy"

Question 3

■ Where does the work you do pumping water go?

Balloons 33

Balloons 35

Pressure Potential Energy

- Pressure potential energy is unusual because
 - it's not really stored in the pressurized water,
 - it's promised by the water's pressure source.
- In steady state flow (SSF),
 - which is steady flow in motionless surroundings,
 - promised energy is as good as stored energy,
 - so pressure potential energy (PPE) is meaningful.

Balloons 32

Question 4

■ As water flows, what happens to its energy?

Energy and Bernoulli (no gravity)

- In SSF, water flows along streamlines
- Water flowing along a single streamline in SSF
 has both PPE and kinetic energy (KE),
 - = has bour ITE and kinede energy (KE),
 - must have a constant total energy per volume,and obeys Bernoulli's equation (no gravity):

$\frac{112}{\text{Volume}} + \frac{122}{\text{Volume}} = \frac{200032000}{\text{Volume}}$

How Water Moves (with gravity)

Balloons 34

Balloons 36

- Weight contributes to the net force on water
- Without a pressure imbalance, water falls
- Water in equilibrium has a pressure gradient
 - Its pressure decreases with altitude
 - Its pressure increases with depth
- Water has gravitational potential energy (GPE)

Energy and Bernoulli (with gravity) • Water flowing along a single streamline in SSF • has PPE, KE, and GPE, • must have a constant total energy per volume, • and obeys Bernoulli's equation (with gravity) $\frac{PPE}{Volume} + \frac{KE}{Volume} + \frac{GPE}{Volume} = \frac{Constant}{Volume}$

Energy Transformations (part 1)

- As water flows upward in a uniform pipe,
 - its speed can't change (a jam or a gap would form),
 - so its gravitational potential energy increases
 - and its pressure potential energy decreases.
- As water flows downward in a uniform pipe,
 - its speed can't change,
 - so its gravitational potential energy decreases
 - and its pressure potential energy increases.

Balloons 39

Balloons 41

Energy Transformations (part 2)

- As water rises upward from a fountain nozzle,
 - its pressure stays constant (atmospheric),
 - so its gravitational potential energy increases
 - and its kinetic energy decreases.
- As water falls downward from a spout,
 - its pressure stays constant (atmospheric),
 - so its gravitational potential energy decreases
 - and its kinetic energy increases.

Energy Transformations (part 3)

- As water sprays horizontally from a nozzle,
 - its height is constant,

Balloons 38

Balloons 40

Balloons 42

- so its kinetic energy increases
- and its pressure potential energy decreases.
- As a horizontal stream of water hits a wall,
 - its height is constant,
 - so its kinetic energy decreases
 - and its pressure potential energy increases.

Summary about Water Distribution

- Water's energy remains constant during SSF
- Water's energy changes form as it
 - flows upward or downward inside pipes,
 - rises or falls in open sprays,
 - and shoots out of nozzles or collides with objects.
- Water distribution can driven by
 - pressurized water (PPE)
 - elevated water (GPE)
 - fast-moving water (KE)

Turn off all electronic devices

Garden Watering

Observations about Garden Watering

- Faucets allow you to control water flow
- Faucets make noise when open
- Longer, thinner hoses deliver less water
- Water sprays faster from a nozzle
- Water only sprays so high
- A jet of water can push things over

6 Questions about Garden Watering

- How does a faucet control flow?
- How much does the diameter of a hose matter?
- Why does water pour gently from an open hose?
- Why does water spray so hard from a nozzle?
- What causes hissing in a faucet, hose, or nozzle?
- Why do pipes rattle when you close the faucet?

Question 1

How does a faucet control flow?

Faucets and Water Flow

- In going through a faucet, water must
 - flow through a narrow passage

Balloons 44

Balloons 46

- and pass close to the faucet's stationary surfaces
- Total energy limits flow speed through passage
 - The water turns its total energy into kinetic energy,but its peak speed is limited by its initial pressure
- Motion near the surfaces slows the water
 - Because water at the walls is stationary,
 - viscous forces within the water slow all of it

Balloons 45

Viscous Forces and Viscosity

- Viscous forces
 - oppose relative motion within a fluid
 - and are similar to sliding friction: they waste energy
- Fluids are characterized by their viscosities
 - the measure of the strength of the viscous forces
 - and caused by chemical interactions with the fluids

Question 2

How much does the diameter of a hose matter?

Balloons 47

Hoses and Water Flow (part 1)

- The rate at which water flows through a hose,
 - increases as end-to-end pressure difference increases,
 - decreases as water's viscosity increases,
 - decreases as the hose becomes longer,
 - and increases *dramatically* as the hose becomes wider
- Increasing the hose width
 - enlarges cross-sectional area through which to flow
 - and lets water get farther from the walls of the hose

Hoses and Water Flow (part 2)

- Water flow through a hose is proportional to
 - pressure difference
 - 1/viscosity

Balloons 48

- 1/hose length
- (hose diameter)⁴
- Poiseuille's law:

w rate = $\frac{\pi \cdot \text{pressure difference} \cdot \text{hose diameter}^4}{420}$

 $128 \cdot \text{hose length} \cdot \text{viscosity}$

Question 3

■ Why does water pour gently from an open hose?

Wasting Energy in a Hose

Viscous effects

Balloons 50

- waste water's total energy as thermal energy
- and become stronger with increased flow speed
- Increasing the speed of the flow
 - increases the energy wasted by each portion of water
 - makes the loss of pressure more rapid

Balloons 51

Question 4

• Why does water spray so hard from a nozzle?

Balloons 52

Making Water Accelerate

- Even in steady-state, water can accelerate
 - but forward acceleration would leave gaps
 - and backward acceleration would cause jams,
 - so the acceleration must involve turning.
- Acceleration toward the side (turning)
 - requires obstacles,
 - and involves pressure imbalances
 - and changes in speed.

Balloons 53

Bending the Flow in a Hose

- Bending the flow requires a pressure imbalanceThe water accelerates toward lower pressure
- Flow in bent hose develops a pressure gradient
 - higher pressure & lower speed
 on the outside of the bend
 - lower pressure & higher speed on the inside of the bend
 - and water accelerates from high pressure to lower pressure

Question 5

■ What causes hissing in a faucet, hose, or nozzle?

Water Flow Isn't Always Smooth

■ We've been examining laminar flow

Balloons 56

Balloons 58

Balloons 60

- in which viscosity dominates the flow's behaviorand nearby regions of water remain nearby
- Now we'll also consider turbulent flow
 - \blacksquare in which inertia dominates the flow's behavior
 - and nearby regions of water become separated

Why do pipes rattle when you close the faucet?

Balloons 59

Water and Momentum

- Water carries momentum
- Water transfers its momentum via impulses: impulse = pressure · surface area · time
- Large momentum transfers requires
 - large pressures,
 - large surface areas,
 - and/or long times.
- Moving water can be surprisingly hard to stop

Summary about Garden Watering

- Total energy limits speed, height, and pressure
- Bending water flows develop pressure gradients
- Nozzles exchange pressure for speed
- Viscosity wastes flowing water's total energy
- Turbulence wastes flowing water's total energy
- Wasted total energy because thermal energy
- Moving water has momentum, too

Turn off all electronic devices

Balloons 62

Balloons 64

Balloons 66

Observations about Balls and Air

- Air resistance slows a ball down
- The faster a ball moves, the quicker it slows
- Some balls have deliberately roughened surfaces
- Spinning balls curve in flight

3 Questions about Balls and Air

- Why do balls experience air resistance?
- Why do some balls have dimples?
- Why do spinning balls curve in flight?

Question 1

Why do balls experience air resistance?

Balloons 65

Balloons 63

Aerodynamic Forces: Drag

- Air resistance is technically called "drag"
- When a ball moves through air, drag forces arise
 - The air pushes the ball downstream
 - \blacksquare and the ball pushes the air upstream
- Drag forces transfer momentum
 - air transfers downstream momentum to ball
 - ball transfers upstream momentum to air

Aerodynamic Forces: Lift

- When a ball deflects passing air, lift forces arise
 - The air pushes the ball to one side
 - \blacksquare and the ball pushes the air to the other side
- Lift forces transfer momentum
 - air transfers sideways momentum to ball
 - ball transfers sideways momentum to air
- Lift forces don't always point upward!

Types of Drag & Lift

- Surface friction causes viscous drag
- Turbulence causes pressure drag
- Deflected flow causes lift
- Deflected flow also leads to induced drag

Perfect Flow Around a Ball

- Air bends away from ball's frontAt front: high pressure, slow flow
- Air bends toward ball's sidesAt side: low pressure, fast flow

Balloons 68

Balloons 70

Balloons 72

- Air bends away from ball's back
 - At back: high pressure, slow flow
- Pressures on opposite sides balance perfectly,
- so ball experiences only viscous drag.

Balloons 69

Balloons 71

The Onset of Turbulence

- Air flowing into the rising pressure behind ball
 - accelerates backward (decelerates)
 - and converts kinetic energy into pressure potential.
- Air flowing nearest the ball's surface
 - also experiences viscous drag
 - and converts kinetic energy into thermal energy.
 - If it runs out of total energy, it stops or "stalls"
- If air nearest the ball stalls, turbulence ensues

Imperfect Flow Around Slow Ball

- Air flowing near ball's surface
 - stalls beyond ball's sides
 - and peels main air flow off of ball.
- Big wake forms behind ball
 - Since wake pressure is ambient,
 - ball experiences unbalanced pressures.
- Ball experiences a large pressure drag force

Question 2

Why do some balls have dimples?

Boundary Layer

- Flow near the surface forms a "boundary layer"
- At low Reynolds number (<100,000)
 - the boundary layer is laminar,
 - so closest layer is slowed relentlessly by viscous drag
- At high Reynolds number (>100,000)
 - the boundary layer itself is turbulent,
 - so tumbling continually renews closest layer's energy
 - boundary layer penetrates deeper into rising pressure

Imperfect Flow Around Fast Ball

- Air flowing near ball's surfacestalls beyond ball's sides
- and peels main air flow off of ball.
 Boundary layer is turbulent

- and retains total energy farther,so it resists peeling better.
- Small wake forms behind ball
- Ball experiences a small pressure drag force

Tripping the Boundary Layer

- To reduce pressure drag, some balls have dimples
 - Dimples "trips" the boundary layer
 - and causes boundary layer to become turbulent.
 - Since turbulent boundary layer resists peeling better,
 - ball's main airflow forms smaller turbulent wake.
- Example: Golf balls

Balloons 74

Balloons 76

Ralloons 78

Balloons 75 Question 3 • Why do spinning balls curve in flight?

Spinning Balls, Magnus Force

- Turning surface pushes/pulls on the air flow
 - Air on one side makes long bend toward ball
 - Air on other side makes shorter bend away from ball
 - Pressures are unbalanced
- The overall air flow is deflectedBall pushes air to one side
 - Air pushes ball to other side
- Ball feels Magnus lift force

Spinning Balls, Wake Force

- Turning surface alters point of flow separation
 - Flow separation is delayed on one side
 - and hastened on the other side,
 - so wake is asymmetric

Balloons 77

- The overall air flow is deflected
 - Ball pushes air to one side
 - Air pushes ball to other side
- Ball feels Wake lift force

Summary about Balls and Air

- The air pressures around these objects are not uniform and result in drag and lift
- Balls experience mostly pressure drag
- Spinning balls experience Magnus and Wake Deflection lift forces

Observations about Airplanes

- Airplanes use the air to support themselves
- Airplanes need airspeed to stay aloft
- Airplanes seem to follow their nose, up or down
- Airplanes can rise only so quickly
- Airplane wings often change shape in flight
- Airplanes have various propulsion systems

6 Questions about Airplanes

- How does an airplane support itself in the air?
- How does the airplane "lift off" the runway?
- Why does plane tilt up to rise; down to descend?
- Why are there different wing shapes?
- How does a plane turn?
- How does a plane propel itself through the air?

Balloons 82

Balloons 84

Balloons 80

Question 1

How does an airplane support itself in the air?

Balloons 83

Balloons 81

Using a Wing to Obtain Lift (part 1)

■ As air flows under a wing, ■ air bends away from the wing

• As air flows over the wing,

- air's pressure rises, speed drops
- air bends toward the wing air's pressure drops, speed rises
- The wing experiences a pressure imbalance
- There is an upward pressure force on the wing

Using a Wing to Obtain Lift (part 2)

- The wing experiences
 - a strong upward lift force
 - a small downstream drag force
- Wing pushes air down, air pushes wing up!
- Downward momentum is transferred
 - from the earth to the airplane by gravity,
 - from the airplane to the air by lift forces, and
 - from the air to the earth by pressure on the ground

Question 2

■ How does the airplane "lift off" the runway?

Balloons 86

Balloons 88

Balloons 90

Angle of Attack

- A wing's lift depends on
 - the shape of its airfoil
 - and on its angle of attack-its tilt relative to the wind
- Tilting an airplane's wings
 - changes the net force on the airplane
 - and can make the airplane accelerate up or down
 - but usually requires tilting the airplane's fuselage
- Plane's tilt controls lift, not direction of travel

Balloons 89

Limits to Lift: Stalling

- At too great an angle of attack,
 - the upper boundary layer stalls,
 - the airstream detaches from wing,
 - the lift nearly vanishes,
 - and pressure drag appears
- Plane plummets abruptly

Question 4

Why are there different wing shapes?

Turning and Orientation

- Airplanes use lift to accelerate to the side
- Three orientation controls:

Balloons 93

- Angle of attack controlled by elevators
- Left-right tilt controlled by ailerons
- Left-right rotation controlled by rudder
- Steering involves ailerons and rudder
- Elevation involves elevators and engine

Question 6

Balloons 94

■ How does a plane propel itself through the air?

Balloons 95 Propellers are spinning wings They deflect air backward, do work on air (add energy), and pump air toward rear of plane Action-Reaction They push the air backward, so air pushes them forward

Jet Engines (Part 2)

- Air entering diffuser slows and its pressure rises
- Compressor does work on air
- Fuel is added to air and that mixture is burned
- Expanding exhaust gas does work on turbine

As exhaust leaves

nozzle it speeds up and its pressure drops

Balloons 99

Summary about Airplanes

- Airplanes use lift to support themselves
- Propulsion overcomes induced drag
- Speed and angle of attack affect altitude
- Extreme angle of attack causes stalling
- Propellers do work on passing airstream
- Jet engines do work on slowed airstream