

Observations about Skating

- When you're at rest on a level surface, without a push, you remain stationary \blacksquare with a push, you start moving that direction **When you're moving on a level surface,** without a push, you coast steady & straight
	- with a push, you change direction or speed

4 Questions about Skating

- 1. Why does a stationary skater remain stationary?
- 2. Why does a moving skater continue moving?
- 3. Why does a skater need ice or wheels to skate?
- 4. How does a skater start or stop moving?

Question 1

Q: Why does a stationary skater remain stationary? A: A body at rest tends to remain at rest

This observed behavior is known as inertia

Question 2

Q: Why does a moving skater continue moving?

A: A body in motion tends to remain in motion

This behavior is the second half of inertia

Newton's First Law (Version 1)

An object that is free of external influences moves in a straight line and covers equal distances in equal times.

Note that a motionless object obeys this law!

Q: Why does a skater need ice or wheels to skate? A: Real-world complications usually mask inertia

Solution: minimize or overwhelm complications

- To observe inertia, therefore,
	- work on level ground (minimize gravity's effects)
	- use wheels, ice, or air support (minimize friction)
	- work fast (overwhelm friction and air resistance)

Physical Quantities

- 1. Position an object's location
- 2. Velocity its change in position with time
- Both are vector quantities:
	- **Position is distance and direction from reference**
	- Velocity is speed and direction of motion

Newton's First Law (Version 2)

An object that is free of external influences moves at a constant velocity.

> Note that a motionless object is moving at a constant velocity of zero!

Physical Quantities

- $3.$ Force $-$ a push or a pull
- Force is another vector quantity: the amount and direction of the push or pull

Newton's First Law

An object that is not subject to any outside forces moves at a constant velocity.

Question 4

- Q: How does a skater start or stop moving?
- A: A net force causes the skater to accelerate!
- 4. Acceleration change in velocity with time
- 5. Mass measure of object's inertia
- Acceleration is yet another vector quantity: \blacksquare the <u>rate</u> and <u>direction</u> of the change in velocity

Summary about Skating

- Skates can free you from external forces
- **When you experience no external forces,**
	- \blacksquare You coast you move at constant velocity
	- \blacksquare If you're at rest, you remain at rest
	- If you're moving, you move steadily and straight
- When you experience external forces
	- \blacksquare You accelerate you move at a changing velocity
	- Acceleration depends on force and mass

Observations about Falling Balls

When you drop a ball, it

- begins at rest, but acquires downward speed **covers more and more distance each second**
- When you tossed a ball straight up, it
	- rises to a certain height
	- \blacksquare comes momentarily to a stop
	- and then descends, much like a dropped ball
- A thrown ball travels in an arc

5 Questions about Falling Balls

- 1. Why does a dropped ball fall downward?
- 2. Do different balls fall at different rates?
- 3. Would a ball fall differently on the moon?
- 4. Can a ball move upward and still be falling?
- 5. Does a ball's horizontal motion affect its fall?

Q: Why does a dropped ball fall downward? A: Earth's gravity exerts a force on the ball

- That force is the ball's weight
- That weight points toward earth's center
- Its weight causes the falling ball to accelerate downward—toward earth's center

Question 2

Q: Do different balls fall at different rates? A: No, they all fall together!

A ball's weight is proportional to its mass:

Their ratio is called "the acceleration due to gravity"

Acceleration Due to Gravity

Why this strange name?

weight of ball $\rightarrow \frac{\text{force}}{\text{mass}} \rightarrow \text{acceleration}$

Acceleration due to gravity is an acceleration!

9.8 $\frac{\text{newtons}}{\text{kilogram}} = 9.8 \frac{\text{meters}}{\text{second}^2}$

 On earth's surface, all falling balls accelerate downward at 9.8 meter/second2

Q: Would a ball fall differently on the moon? A: Yes!

Moon's acceleration due to gravity is 1.6 meters second²

Question 4

Q: Can a ball move upward and still be falling? A: Yes!

A falling ball experiences only its weight

- **Its acceleration is constant and downward**
- Its velocity increases in the downward direction

Ball's initial velocity can be anything, even upward!

Falling Downward

When dropped from rest, ball's velocity starts at zero

- and increases downward ball's altitude decreases at
- an ever faster rate

Falling Upward First

- When thrown upward,
	- ball's velocity starts upward but increases downward
	- **ball's altitude increases at an** ever slower rate until…
	- velocity is momentarily zero
	- \blacksquare then ball falls downward...

Summary About Falling Balls

- **Without gravity, an isolated ball would coast**
- **With gravity**, an isolated ball
	- experiences its weight,
	- \blacksquare accelerates downward,
	- \blacksquare and its velocity becomes increasingly downward
- Whether going up or down, it's still falling
- \blacksquare It can coast horizontally while falling vertically

Observations About Ramps

- It's difficult to lift a heavy cart straight up
- It's easer to push a heavy cart up a ramp
- That ease depends on the ramp's steepness
- **Shallow ramps need gentler but longer pushes**

4 Questions about Ramps

- 1. Why doesn't a cart fall through a sidewalk?
- 2. How does the sidewalk know how hard to push?
- 3. Why is it easy to push the cart up the ramp?
- 4. What physical quantity is the same for any ramp?

Q: Why doesn't a cart fall through a sidewalk? A: The sidewalk pushes up on it and supports it

Sidewalk and cart cannot occupy the same space Sidewalk exerts a support force on cart that

- prevents cart from penetrating sidewalk's surface
- \blacksquare acts perpendicular to sidewalk's surface \rightarrow upward
- balances cart's downward weight

Question 2

Q: How does the sidewalk know how hard to push? A: The sidewalk and cart negotiate

The cart and sidewalk dent one another slightly \blacksquare the more they dent, the harder they push apart

 \blacksquare cart accelerates up or down in response to net force

 \blacksquare cart bounces up and down during this negotiation

Cart comes to rest at equilibrium—zero net force

Newton's Third Law

For every force that one object exerts on a second object, there is an equal but oppositely directed force that the second object exerts on the first object.

Misconception Alert

The forces two objects exert on one another must be equal and opposite, but each force of that Newton's third law pair is exerted on a different object, so those forces do not cancel one another.

The Cart and Sidewalk Negotiate

If the cart and sidewalk dent one another too much,

- \blacksquare each one pushes the other away strongly
- \blacksquare they accelerate away from one another
- If the cart and sidewalk dent one another too little,
	- each one pushes the other away weakly (or not at all) \blacksquare they accelerate toward one another
- If the cart and sidewalk dent one another just right,
	- cart is in equilibrium (zero net force)

Question 3

Q: Why is it easy to push the cart up the ramp? A: The ramp supports most of the cart's weight

Net force on cart is the ramp force, which is small

Pushing the Cart up the Ramp

To start the cart moving uphill

- push cart uphill more than the downhill ramp force net force is uphill, so cart accelerates uphill
- To keep the cart moving uphill
	- push cart uphill just enough to balance ramp force ■ cart continues uphill at constant velocity

To stop the cart moving uphill,

- push cart uphill less than the downhill ramp force
- net force is downhill, so cart accelerates downhill

Question 4

Q: What physical quantity is the same for any ramp? A: The work you do lifting the cart a certain height

> work = force \cdot distance (where force and distance are in same direction)

For a steep ramp: $work = Force \cdot Distance$ For a shallow ramp: work = Force \cdot Distance

Energy and Work

- **Energy a conserved quantity**
	- it can't be created or destroyed
	- it can be transformed or transferred between objects \blacksquare is the capacity to do work
- Work mechanical means of transferring energy work = force \cdot distance

(where force and distance are in same direction)

Transfers of Energy

- **Energy has two principal forms**
	- \blacksquare Kinetic energy energy of motion
	- Potential energy energy stored in forces
- \blacksquare Your work transfers energy from you to the cart
	- Your chemical potential energy decreases
	- Cart's gravitational potential energy increases

Mechanical Advantage

- **Mechanical advantage is doing the same work,** using a different balance of force and distance
- A ramp provides mechanical advantage
	- You lift cart with less force but more distance
	- Your work is independent of the ramp's steepness

Summary about Ramps

- Ramp supports most of the cart's weight
- Nou do work pushing the cart up the ramp
- The ramp provides mechanical advantage It allows you to push less hard
	- but you must push for a longer distance
	- Your work is independent of ramp's steepness

Observations about Wind Turbines

- **Wind turbines rotate steadily**
- Wind turbines are symmetric and balanced
- Most wind turbines have three blades
- Wind turbines start or stop spinning gradually
- \blacksquare They convert wind energy to electrical energy

5 Questions about Wind Turbines

- 1. How does a balanced wind turbine move?
- 2. Why does a wind turbine need a pivot?
- 3. Why do wind turbines have several blades?
- 4. How does energy go from wind to generator?
- 5. Why does a working wind turbine spin steadily?

Question 1

- Q: How does a balanced wind turbine move?
- A: It moves at constant angular velocity
- …because the wind turbine has rotational inertia!

Newton's first law of rotational motion

A rigid object that's not wobbling and that is free of outside torques rotates at constant angular velocity.

Physical Quantities

- 1. Angular Position an object's orientation
- 2. Angular Velocity change in angular position with time
- 3. Torque a twist or spin
- All three are vector quantities
	- Ang. Pos. is angle and rotation axis from reference
	- Ang. Vel. is angular speed and rotation axis
	- Torque is amount and rotation axis of twist or spin

Question 2

- Q: Why does a wind turbine need a pivot?
- A: To prevent translational motion (i.e., falling)
- Pivot is placed at natural pivot—center of mass
- Pivot allows rotation, but not translation

Q: Why do wind turbines have several blades? A: To balance them—zero torque due to gravity

- \blacksquare The weight of a single-blade produces a torque torque $=$ lever arm \cdot force (where the lever arm is perpendicular to the force)
- **That torque would cause angular acceleration**
- Wind-turbine's angular velocity would fluctuate

Physical Quantities

- 4. Angular Acceleration change in angular velocity with time
- 5. Rotational Mass measure of rotational inertia
- Angular acceleration is another vector quantity: The rate and rotation axis of change in ang. velocity

Newton's Second Law of Rotational Motion

An object's angular acceleration is equal to the net torque exerted on it divided by its rotational mass. The angular acceleration is in the same direction as the torque.

 $\frac{1}{\text{angular acceleration}} = \frac{1}{\text{net torque}}$

Balancing the Turbine

- Installing a second blade adds a second torque ■ The two torques act in opposite directions
	- Net torque due to gravity is zero \rightarrow turbine is balanced
- \blacksquare A three-blade turbine is also balanced

Turbine Size and Responsiveness

- Wind torque is proportional to blade-length² \blacksquare wind force is proportional to blade-length \blacksquare lever arm is proportional to blade-length
- Rotational mass is proportional to blade-length³
	- \blacksquare blade mass is proportional to blade-length
	- \blacksquare effect of that mass is proportional to blade-length²
- **Longer blades have slower angular accelerations**
- Giant turbines take time to start or stop

Question 4

Q: How does energy go from wind to generator? A: Wind does rotational work on a generator

> work $=$ torque \cdot angle (where torque and angle in same direction)

- Wind does work on a turbine blade
- Turbine does work on a generator

Q: Why does a working wind turbine spin steadily? A: Generator and wind torques on turbine cancel

Newton's Third Law of Rotational Motion

For every torque that one object exerts on a second, there is an equal but oppositely directed torque that the second object exerts on the first.

Generator twists turbine, canceling wind torque

Summary about Wind Turbines

- Without wind or generator, balanced turbine
	- experiences zero gravitational torque rotates at constant angular velocity
- \blacksquare Wind forces produce torques on turbine's blades
- Generator exerts opposing torque on turbine
- Wind turbine turns at constant angular velocity
- **Energy goes from wind to turbine to generator**

Observations about Wheels

- Friction makes wheel-less objects skid to a stop
- **Fiction can waste energy and cause wear**
- **N** Wheels mitigate the effects of friction
- **Wheels can also propel vehicles**

5 Questions about Wheels

- 1. Why does a wagon need wheels?
- 2. Why is sliding a box hardest at the beginning?
- What happens to energy as a box skids to rest?
- 4. How do wheels help a wagon coast?
- 5. What energy does a wheel have?

Question 1

- Q: Why does a wagon need wheels?
- A: Friction opposes a wheel-less wagon's motion
- **Frictional forces**
	- oppose relative sliding motion of two surfaces
	- \blacksquare act along the surfaces to bring them to one velocity
	- come in Newton's third law pairs

Q: Why is sliding a box hardest at the beginning? A: Static friction is stronger than sliding friction.

Static friction opposes the start of sliding varies in amount from zero to a maximum value Sliding friction opposes ongoing sliding \blacksquare has a constant value proportional to support force Static friction's maximum exceeds sliding friction

Question 3

Q: What happens to energy as a box skids to rest?

A: That energy becomes thermal energy.

Only sliding friction wastes energy

- The two surfaces travel different distances
- The missing work becomes thermal energy
- The surfaces also experience wear

The Many Forms of Energy

- Kinetic: energy of motion
- **Potential:** stored in forces between objects
	- Gravitational
	- Magnetic Electri Electric
	- **Electrochemical**
-

Elastic

-
- Chemical
- Nuclear
- **Thermal energy: disorder into tiny fragments**
	- Reassembling thermal energy is statistical impossible

Question 4

Q: How do wheels help a wagon coast?

- A: Wheels can eliminate sliding friction.
- **N** Wheels & roller bearings eliminate sliding friction
	- rollers eliminate sliding friction, but don't recycle
	- simple wheels have sliding friction at their hub/axle
	- combining roller bearings with wheels is ideal

Practical Wheels

Free wheels are turned by the vehicle's motion **Powered wheels propel** the vehicle as they turn.

Q: What energy does a wheel have? A: Kinetic energy, both translation and rotational.

For a translating wheel:

For a rotating wheel: The wheel of a moving vehicle has both! kinetic energy = $\frac{1}{2}$ · mass·speed² kinetic energy = $\frac{1}{2}$ · rotational mass · angular speed²

Summary about Wheels

- **Sliding friction wastes energy**
	- Wheels eliminate sliding friction
	- A vehicle with wheels coasts well
- \blacksquare Free wheels are turned by static friction
- Powered wheels use static friction to propel car

Observations about Bumper Cars

- Moving cars tend to stay moving
- **Changing a car's motion takes time**
- **Impacts alter velocities and angular velocities**
- Cars often appear to exchange their motions
- The fullest cars are the hardest to redirect
- \blacksquare The least-full cars get slammed during collisions

3 Questions about Bumper Cars

- 1. Does a moving bumper car carry a force?
- 2. Does a spinning bumper car carry a torque?
- 3. How does a car accelerate on an uneven floor?

Question 1

Q: Does a moving bumper car carry a force? A: No, the bumper car carries momentum.

Momentum is a conserved vector quantity

- can't be created or destroyed, but can be transferred
- combines bumper car's inertia and velocity $momentum = mass · velocity$

Exchanging Momentum

- Bumper cars exchange momentum via impulses $impulse = force \cdot time$
- When car₁ gives an impulse to car₂, car₂ gives an equal but oppositely directed impulse to car₁.
	- The total momentum doesn't change
	- Car with least mass changes velocity most,
	- so the littlest riders get creamed

Question 2

Q: Does a spinning bumper car carry a torque? A: No, the bumper car carries angular momentum

Angular momentum is a conserved vector quantity ■ can't be created or destroyed, but can be transferred combines bumper car's rotational inertia and velocity angular momentum = rotational mass· angular velocity

Exchanging Angular Momentum

Bumper cars exchange angular momentum via angular impulses

angular impulse $=$ torque \cdot time

- When car₁ gives an angular impulse to car₂, car₂ gives an equal but oppositely directed angular impulse to car_1 .
	- The total angular momentum doesn't change
	- Car with least rot. mass changes ang. velocity most.
	- so the littlest riders get spun wildly

Rotational Mass can Change

- Mass can't change, so the only way an object's velocity can change is if its momentum changes
- Rotational mass can change, so an object that changes shape can change its angular velocity without changing its angular momentum

Question 3

Q: How does a car accelerate on an uneven floor?

A: It reduces potential energy as quickly as possible

Forces and potential energies are related!

- A bumper car accelerates in the direction that reduces its total potential energy as quickly as possible
- On an uneven floor, that is down the steepest slope

Summary about Bumper Cars

- During collisions, bumper cars exchange momentum via impulses
	- angular momentum via angular impulses
- \blacksquare Collisions have less effect on
	- cars with large masses
	- cars with large rotational masses

Observations about Spring Scales

- **They move downward during weighing**
- **They take a little time to settle**
- They're only accurate when everything is at rest

4 Questions about Spring Scales

- What exactly is a spring scale measuring?
- How does a spring scale measure weight?
- What is the scale's dial or meter reporting?
- Why must you stand still on a spring scale?

Question 1

What exactly is a spring scale measuring?

Mass as a Measure

- An object's mass doesn't depend on its location
- Measuring an object's mass can be done directly:
	- **Exert a known force on the object**
	- \blacksquare Measure the object's acceleration
	- Divide the force by the acceleration to find the mass
- **Measuring acceleration accurately is difficult**

Weight as a Measure

- An object's weight is proportional to its mass
- **The proportionality depends on location (gravity)**
- **Measuring an object's weight is done indirectly:** The object's weight is a force that acts on the object
	- There is no direct way to measure that weight
- Fortunately, measuring weight indirectly is easy
- Spring scales measure weight, not mass

How does a spring scale measure weight?

Measuring Weight Indirectly

- Recall that when an object is at equilibrium,
	- \blacksquare individual forces sum to zero—they cancel perfectly. ■ object is inertial—it remains motionless or it coasts.
- \blacksquare Spring scale measures weight using equilibrium ■ Exert an adjustable upward force on the object
	- Adjust that force until the object is in equilibrium
	- Measure the amount of that upward force
	- Report the amount as the object's weight

Spring Scales and Equilibrium

- **Springs provide adjustable, measurable forces**
- A spring scale
	- supports object with upward force from a spring
	- \blacksquare allows the spring and object to reach equilibrium
	- reports the spring's force as the object's weight

Question 3

What is the scale's dial or meter reporting?

Springs

- When free, a spring adopts its equilibrium length Its ends experience zero net force
	- \blacksquare Its ends are in equilibrium
- \blacksquare When distorted, its ends experience forces that
	- act to restore the spring to its equilibrium length
	- make the equilibrium length stable
	- \blacksquare are proportional to the distortion
	- \blacksquare are called restoring forces

Hooke's Law

The restoring force on the end of a spring is equal to a spring constant times the distance the spring is distorted. That force is directed opposite the distortion.

restoring force $=$ – spring constant \cdot distortion

A Spring Scale

- To weigh an object with a spring scale, support the object with a spring,
	- allow the object to settle at equilibrium,
	- \blacksquare and measure the distortion of the spring.
- **The spring constant relates distortion to force**
- With proper calibration, reporting the spring's distortion is equivalent to reporting the restoring force that is supporting the object

Question 4

Why must you stand still on a spring scale?

Spring Scales and Acceleration

- **Weight measurements require equilibrium**
- **Without equilibrium,**
	- \blacksquare the spring force doesn't balance the weight \blacksquare the "measurement" is meaningless
- Since an accelerating object is not at equilibrium, vou mustn't bounce on a scale!
	- you must wait for the scale to settle before reading!

Oscillation

- When you first load a scale, it bounces
	- It accelerates toward a new equilibrium
	- It then coasts through that equilibrium
	- \blacksquare It then accelerates back toward the new equilibrium
	- \blacksquare It returns and overshoots many times
- It oscillates around its stable equilibrium
	- To settle at equilibrium, it must get rid of energy
	- Friction and air resistance help it settle

Summary about Spring Scales

- **The spring stretches during weighing**
- **This stretch is proportional to the weight**
- The scale measures the spring's stretch
- The scale reports weight based on stretch

Ball Sports: Bouncing

Observations about Bouncing Balls

- Some balls bounce better than others
- Dropped balls don't rebound to their full height
- **Balls bounce differently from different surfaces**
- **Ball bounce differently from moving objects**

4 Questions about Bouncing Balls

- Why can't a ball that's dropped on a hard floor rebound to its starting height?
- Why does the floor's surface affect the bounce?
- \blacksquare How does a ball bounce when it hits a bat?
- What happens to the bat when a ball hits it?

Question 1

 Why can't a ball that's dropped on a hard floor rebound to its starting height?

Bouncing from a Rigid Floor

- As it strikes a rigid floor, a ball's kinetic energy decreases by the "collision" energy \blacksquare elastic potential energy increases as it dents
- \blacksquare As it rebounds from that surface, the ball's
	- \blacksquare elastic potential energy decreases as it undents kinetic energy increases by the "rebound" energy
- Rebound energy < collision energy
	- A "lively" ball wastes little energy as thermal energy
	- A "dead" ball wastes most of its energy

Measuring a Ball's Liveliness

Coefficient of Restitution

 \blacksquare is a conventional measure of a ball's liveliness is the ratio of outgoing to incoming speeds:

 $\text{coefficient of restitution} = \frac{\text{outgoing speed}}{\text{outgoing speed}}$ incoming speed

Question 2

Why does the floor's surface affect the bounce?

Bouncing from an Elastic Floor

- **Both ball and floor dent during a bounce**
- **Work** is proportional to dent distance
- The denting floor stores and returns energy A "lively" floor wastes little energy
	- A "dead" floor wastes most of its energy
- A floor has a coefficient of restitution, too
- A soft, lively floor can help the ball bounce!

Question 3

How does a ball bounce when it hits a bat?

Bouncing from Moving Surfaces

- Incoming speed \rightarrow approaching speed
- Outgoing speed → separating speed
- Coefficient of Restitution becomes:

 $\text{coefficient of restitution} = \frac{\text{separating speed}}{\text{approaching speed}}$

Ball and Bat (Part 1) Ball heads toward home plate at 100 km/h Bat heads toward pitcher at 100 km/h Approaching speed is 200 km/h $\frac{6}{100}$ km/h 100 km/h

Ball and Bat (Part 2)

- Approaching speed is 200 km/h
- Baseball's coefficient of restitution: 0.55
- Separating speed is 110 km/h

Ball and Bat (Part 3) Separating speed is 110 km/h Bat heads toward pitcher at 100 km/h Ball heads toward pitcher at 210 km/h

What happens to the bat when a ball hits it?

Bouncing's Effects on Objects

- A bouncing ball transfers momentum
	- while stopping
	- while rebounding
	- \blacksquare so a livelier ball transfers more momentum
- A bouncing ball can also transfer energy
- **These two transfers together govern bouncing**

Impact Forces

- While a ball is bouncing from an object, the two surfaces exert impact forces on one another.
- **Harder surfaces bounce faster**
	- \blacksquare Momentum is transferred more quickly
	- Time is shorter, so impact forces are larger
- No one likes bouncing off hard surfaces

The Ball's Effects on a Bat

- The ball pushes the bat back and twists it, too
- When the ball hits the bat's center of percussion, \blacksquare the bat's backward and rotational motions balance
	- \blacksquare the bat's handle doesn't jerk
- When the ball hits the bat's vibrational node,
	- the bat doesn't vibrate
	- more energy goes into the ball

Summary about Bouncing Balls

- **Each ball has a coefficient of restitution**
- **Energy lost in a bounce becomes thermal**
- The surface can affect a ball's bounce
- Surfaces bounce, too

Carousels and Roller Coasters

Observations about Carousels and Roller Coasters

- Nou can feel your motion with your eyes closed
- You feel pulled in unusual directions
- You sometimes feel weightless
- Nou can become inverted without feeling it

Falling Balls 116 **5 Questions about Carousels and Roller Coasters**

- What aspects of motion do you feel?
- Why do you feel flung outward on a carousel?
- Why do you feel light on a roller coaster's dives?
- Why do you feel heavy on a roller coaster's dips?
- \blacksquare How do you stay seated on a loop-the-loop?

Question 1 What aspects of motion do you feel?

The Feeling of Weight

- **When you are at equilibrium,** a support force balances your weight \blacksquare and that support force acts on your lower surface,
	- while your weight is spread throughout your body
- You feel internal supporting stresses
- You identify these stresses as weight

The Feeling of Acceleration

When you are accelerating,

- a support force causes your acceleration \blacksquare and that support force acts on your surface, \blacksquare while your mass is spread throughout your body
- You feel internal supporting stresses
- Nou misidentify these stresses as weight

Acceleration and Weight

- **This "feeling of acceleration" is** not a real force
	- \blacksquare just a feeling caused by your body's inertia
	- \blacksquare directed opposite your acceleration
	- **proportional to that acceleration**
- Nou feel an overall "apparent weight"
- feeling of real weight plus "feeling of acceleration"

Why do you feel flung outward on a carousel?

Carousels (Part 1)

- Riders undergo "uniform circular motion"
	- They follow a circular path at constant speed
	- They are accelerating toward the circle's center
	- \blacksquare This acceleration depends on speed and circle size

$\text{acceleration} = \frac{\text{velocity}^2}{\text{radius}}$

- The acceleration of uniform circular motion is
	- \blacksquare a center-directed or centripetal acceleration
	- \blacksquare caused by a center-directed or centripetal force

Carousels (Part 2)

- A centripetal acceleration
	- gives rise to a "feeling of acceleration"
	- that points away from the center of motion
	- \blacksquare and is an experience of inertia, not a real force
- This feeling is often called "centrifugal force"

Questions 3 and 4

- Why do you feel light on a roller coaster's dives?
- Why do you feel heavy on a roller coaster's dips?

Roller Coasters (Part 1 – Hills)

During the dive down a hill,

- acceleration is downhill
- feeling of acceleration is uphill
- \blacksquare apparent weight is weak and into the track
- During the dip at the bottom of a hill,
	- **acceleration is approximately upward**
	- feeling of acceleration is approximately downward
	- apparent weight is very strong and downward

Question 5

How do you stay seated on a loop-the-loop?

Roller Coasters (Part 2 – Loops)

- \blacksquare At top of loop-the-loop,
	- \blacksquare acceleration is strongly downward
	- feeling of acceleration is strongly upward
	- \blacksquare apparent weight can point upward!

Choosing a Seat

- \blacksquare As you go over cliff-shaped hills,
	- **acceleration is downward**
	- feeling of acceleration is upward
- \blacksquare The faster you dive over the first hill, the greater the downward acceleration
	- \blacksquare the stronger the upward feeling of acceleration
- First car dives slowly weak weightlessness Last car dives quickly – stronger weightlessness!

Summary about Carousels and Roller Coasters

- You are often accelerating on these rides
- Nou experience feelings of acceleration
- **Those feelings point opposite the acceleration**
- **Your apparent weight can**
	- **become larger or smaller than your real weight**
	- point at any angle
	- can even point upward!

Observations about Bicycles

- They are hard to keep upright while stationary
- They stay upright easily while moving forward
- **They require leaning during turns**
- **They can be ridden without hands**

5 Questions about Bicycles

- **Why** is a stationary tricycle so stable?
- Why is stationary bicycle so unstable?
- **Nhy** does a moving tricycle flip during turns?
- Why must you lean a bicycle during turns?
- Why can you ride a bicycle without hands?

■ Why is a stationary tricycle so stable?

Tricycles: Static Stability (Part 1)

- An upright tricycle has a "base of support"the polygon formed by its ground contact points
- A tricycle has a center of gravity $$ the effective point at which its weight is located
- When center of gravity is above base of support, the tricycle is in a stable equilibrium:
	- Its gravitational potential starts to increase if it tips,
	- so it accelerates in the direction opposite the tip
	- and returns to the stable equilibrium.

Tricycles: Static Stability (Part 2)

- When its center of gravity isn't above the base, the tricycle is not in equilibrium:
	- Its gravitational potential drops as it tips one way, \blacksquare so it spontaneously accelerates in that direction and it falls over.

Tricycles: Static Stability (Part 3)

- When its center of gravity is above edge of base, the tricycle is in an unstable equilibrium:
	- Its gravitational potential starts decreasing if it tips,
	- \blacksquare so it accelerates in the direction of that tip
	- and doesn't return to the unstable equilibrium.

Question 2

Why is stationary bicycle so unstable?

Bicycles: Static Instability

- A base of support requires 3 contact points
- An upright bicycle has only 2 contact points An upright bicycle is in an unstable equilibrium
	- \blacksquare A stationary bicycle tips over easily

Why does a moving tricycle flip during turns?

Tricycles: Dynamic Instability

- When a tricycle is moving, inertia can take it in the direction opposite its acceleration and flip it, so a stable equilibrium doesn't ensure stability.
- \blacksquare During a turn, the wheels accelerate to the inside \blacksquare but the rider tends to coast straight ahead,
	- so the tricycle begins to tip.
	- The stabilizing acceleration appears but it's too slow
	- \blacksquare and the tricycle tips over anyway.
- **Tricycle drives out from under center of gravity.**

Bicycles: Dynamic Stability

- During a turn, the wheels accelerate to the inside but a bicycle rider can lean to the inside of the turn and therefore accelerate to the inside of the turn, \blacksquare so the rider and bicycle turn together safely.
- The bicycle drives under center of gravity to return to the unstable equilibrium
- **Motion can make a bicycle stable!**

Question 5

Why can you ride a bicycle without hands?

A Bicycle's Automatic Steering

- It naturally steers under its center of gravity \blacksquare due to the design of its rotating front fork
	- (the fork steers to reduce total potential energy) \blacksquare due to gyroscopic precession of the front wheel
	- (the ground's torque on spinning wheel steers it)
- \blacksquare A forward-moving bicycle that begins to tip automatically returns to its unstable equilibrium,
	- \blacksquare and thus exhibits wonderful dynamic stability

Summary about Bicycles

Tricycles

- **have static stability**
- can flip during turns
- \blacksquare Bicycles
	- \blacksquare are statically unstable
	- can lean during turns to avoid flipping
	- automatically steer back to unstable equilibrium
	- have remarkable dynamic stability

Observations about Rockets

- **Plumes of flame emerge from rockets**
- Rockets can accelerate straight up
- Rockets can go very fast
- The flame only touches the ground initially
- Rockets can apparently operate in empty space
- \blacksquare Rockets usually fly nose-first

6 Questions about Rockets

- What pushes a rocket forward?
- How does the rocket use its gas to obtain thrust?
- What keeps a rocket pointing forward?
- What limits a rocket's speed, if anything?
- Once in space, does a spaceship have a weight?
- What makes a spaceship orbit the earth?

Question 1

■ What pushes a rocket forward?

Momentum Conservation

- A rocket's momentum is initially zero
- That momentum is redistributed during thrust
	- Ship pushes on fuel; fuel pushes on ship
	- \blacksquare Fuel acquires backward momentum
	- Ship acquires forward momentum
- Rocket's total momentum remains zero

momentum $_{\text{fuel}}$ + momentum $_{\text{ship}}$ = 0

Rocket Propulsion

- \blacksquare The momenta of ship and fuel are opposite
- The ship's final momentum is

 $momentum_{\text{ship}} = -momentum_{\text{fuel}}$

$=-\text{mass}_{\text{fuel}}\cdot\text{velocity}_{\text{fuel}}$

The greater the fuel mass and backward velocity, the greater the ship's forward momentum

Question 2

How does the rocket use its gas to obtain thrust?

Rocket Engines

- \blacksquare Combustion produces hot, high-pressure gas
- The gas speeds up in a de Laval nozzle
- Gas reaches sonic speed in the nozzle's throat
- **Beyond the throat, supersonic gas expands to** speed up further **Unburned**

Stability and Orientation

- On the ground, a rocket needs static stability
- In the air, a rocket needs aerodynamic stability Center of aerodynamic forces behind center of mass
- In space, a spaceship is a freely rotating object
	- Orientation governed by angular momentum
	- Small rockets are used to exert torques on spaceship
	- Spaceship's orientation doesn't affect its travel

Question 4

What limits a rocket's speed, if anything?

Gravity (Part 1)

- **The earth's acceleration due to gravity is only** constant for small changes in height
- When the distance between two objects changes substantially, the relationship is:

force = $\frac{\text{gravitational constant} \cdot \text{mass}_1 \cdot \text{mass}_2}{\text{cm} \cdot \text{m}}$ (distance between masses)²

Gravity (Part 3)

- Even far above earth, an object has weight
- Astronauts and spaceships have weights weights are somewhat less than normal
	- \blacksquare weights depend on altitude
- Astronauts and spaceships are in free fall
	- Astronauts feel weightless because they are falling

Question 6

What makes a spaceship orbit the earth?

Orbits (Part 1)

- An object that begins to fall from rest falls directly toward the earth
- **Acceleration and velocity** are in the same direction

Orbits (Part 2)

- An object that has a sideways velocity follows a trajectory called an orbit
- **Orbits can be closed** or open, and are ellipses, parabolas, and hyperbolas

Current Rocket Technology

- \blacksquare X-Prize Rockets
- **Single Stage to Orbit Rockets**
- **Improbable Dreams**
	- Rockets that rarely require refueling
	- Rockets that can land and leave large planets
	- Rockets that can turn on a dime in space

Summary About Rockets

- Rockets are pushed forward by their fuel
- Total rocket impulse is basically the product of exhaust speed times exhaust mass
- \blacksquare Rockets can be stabilized aerodynamically
- Rockets can be stabilized by thrust alone
- After engine burn-out, spaceships can orbit

Observations about Woodstoves

- They burn wood in enclosed fireboxes
- **They often have long chimney pipes**
- Their surfaces are usually darkly coated
- They'll burn you if you touch them
- Heat rises off their surfaces
- **They warm you when you stand near them**

5 Questions about Woodstoves

- What are thermal energy and heat?
- How does a woodstove produce thermal energy?
- Why does heat flow from the stove to the room?
- Why is a woodstove better than an open fire?
- How does a woodstove heat the room?

Question 1

What are thermal energy and heat?

Having Thermal Energy

- **Thermal energy is**
	- disordered energy within an object,
	- the kinetic and potential energies of its atoms,
	- \blacksquare and is responsible for temperature
- Thermal energy doesn't include order energies: kinetic energy of an object moving or rotating
	- potential energy of outside interactions

Transferring Heat

Heat is

- energy that flows between objects because of their difference in temperature.
- \blacksquare thermal energy on the move.
- **Technically, objects don't contain "heat"**

Question 2

How does a woodstove produce thermal energy?

Burning Wood

- Fire releases chemical potential energy
	- Wood and air consist of molecules
	- \blacksquare Molecules are bound by chemical bonds
	- When bonds rearrange, they can release energy
	- Burning rearranges bonds and releases energy!

Chemical Forces and Bonds

- Atoms interact via electromagnetic forces
- The chemical forces between two atoms are ■ attractive at long distances,
	- \blacksquare repulsive at short distances,
	- and zero at a specific equilibrium separation
- Atoms at the equilibrium separation
	- are in a stable equilibrium
	- and are bound together by an energy deficit

A Few Names

- \blacksquare Molecule: atoms joined by chemical bonds
- Chemical bond: a chemical-force linkage
- Bond strength: the work needed to break bond
- Reactants: starting molecules
- Products: ending molecules

Chemical Reactions

- **Breaking old bonds takes work**
- **Forming new bonds does work**
- If new bonds are stronger than the old bonds, \blacksquare chemical potential energy \rightarrow thermal energy
- **Breaking old bonds requires energy reaction requires activation energy to start**

When Wood Burns…

- **When you ignite wood,**
	- \blacksquare the reactants are carbohydrates and oxygen
	- \blacksquare the products are water and carbon dioxide
	- \blacksquare the activation energy comes from a burning match
- This reaction releases energy as thermal energy

Question 3

Why does heat flow from the stove to the room?

Heat and Temperature

- Heat naturally flows from hotter to colder \blacksquare Microscopically, thermal energy moves both ways
	- But statistically, the net flow is from hotter to colder
- \blacksquare At thermal equilibrium
	- \blacksquare the temperatures of the objects are equal and no heat flows between those objects
	-
- **Temperature is the average thermal kinetic** energy per particle (slightly oversimplified)

Why is a woodstove better than an open fire?

An Open Fire

- An open fire has good features:
	- Heat flows from hot fire to cold room
- and it has bad features:
	- \blacksquare Smoke enters room
	- Fire uses up room's oxygen
	- Can set fire to room

A Fireplace

- A fireplace has good features:
	- Heat flows from hot fire to cold room
	- Smoke goes mostly up chimney
	- \blacksquare New oxygen enters room through cracks
	- **Less likely to set fire on room**
- and it has bad features:
	- Inefficient at transferring heat to room

A Woodstove

- A woodstove has good features:
	- Heat flows from hot fire to cold room
	- All the smoke goes up chimney pipe
	- New oxygen enters room through cracks or vents
	- Relatively little fire hazard
	- Transfers heat efficiently to room

Heat Exchangers

- A woodstove is a heat exchanger It separates air used by the fire from room air
	- It transfers heat without transferring smoke

Question 5

How does a woodstove heat the room?

Heat Transfer Mechanisms

- **There are three heat transfer mechanisms:**
	- Conduction: heat flows through materials
	- Convection: heat flows via moving fluids
	- \blacksquare Radiation: heat flows via electromagnetic waves
- All three transfer heat from hot to cold

Conduction and Woodstoves

- In conduction, heat flows but atoms stay put
- \blacksquare In an insulator,
	- adjacent atoms jiggle one another
	- \blacksquare atoms do work and exchange energies
	- \blacksquare on average, heat flows from hot to cold atoms
- \blacksquare In a conductor,
	- mobile electrons carry heat long distances
	- \blacksquare heat flows quickly from hot to cold spots
- Conduction moves heat through stove's walls

Convection and Woodstoves

- In convection, heat flows with a fluid's atoms
	- Fluid warms up near a hot object
	- Flowing fluid carries thermal energy with it
	- Fluid cools down near a cold object
	- Overall, heat flows from hot to cold
- **Buoyancy drives natural convection**
	- Warmed fluid rises away from hot object
	- Cooled fluid descends away from cold object
- Convection circulates hot air around the room

Radiation and Woodstoves

- In radiation, heat flows via electromagnetic waves (radio waves, microwaves, light, …)
- Range of waves depends on temperature \blacksquare cold: radio wave, microwaves, infrared light hot: infrared, visible, and ultraviolet light
- \blacksquare Higher temperature \rightarrow more radiated heat
- \blacksquare Blacker surface \rightarrow more radiated heat
- **Black emits and absorbs radiation perfectly**

Stefan-Boltzmann Law

- \blacksquare Emissivity is a surface's emission-absorption efficiency $0 \rightarrow$ perfect inefficiency: white, shiny, or clear
	- $1 \rightarrow$ perfect efficiency: black
- The amount of heat a surface radiates is

power = emissivity · Stefan-Boltzmann constant

·temperature⁴ · surface area

where temperature is measured on an absolute scale

What About Campfires?

- No conduction, unless you touch hot coals
- No convection, unless you are above fire
- **Lots of radiation:**
	- your face feels hot because radiation reaches it
	- your back feels cold because no radiation reaches it

Summary about Wood Stoves

- Use all three heat transfer mechanisms
- Have tall chimneys for heat exchange
- \blacksquare Are dark-coated to encourage radiation
- Are sealed to keep smoke out of room air

Water, Steam, and Ice

Observations about Water, Steam, and Ice

- **Water has three forms or phases**
- **I** Ice is typically present below 32 °F (0 °C)
- **Water is typically present above 32 °F (0 °C)**
- Steam is typically present at high temps
- The three phases sometimes coexist

4 Questions about Water, Steam, Ice

- How can water and ice coexist in a glass?
- Can steam exist below 212 °F (100 °C)?
- Where do ice cubes go in a frostless freezer?
- Is salt the only chemical that helps melt ice?

Question 1

How can water and ice coexist in a glass?

Phases of Matter

- Ice is solid: fixed volume and fixed shape
- Water is liquid: fixed volume but variable shape
- Steam is gas: variable volume and variable shape

Phase Equilibrium

- When two (or more) phases are present
	- molecules continually shift between the phases
	- \blacksquare one phase may grow at the expense of another phase
	- \blacksquare that growth often requires or releases thermal energy
- At phase equilibrium,
	- two (or more) phases can coexist indefinitely neither phase grows at the expense of the other

Ice and Water

- Ice has a melting temperature 32 °F (0 °C)
	- below which solid ice is the stable phase,
	- above which liquid water is the stable phase,
	- \blacksquare and at which ice and water can coexist
- To melt ice at 32 °F (0 °C),
	- destabilize ice relative to water
	- either by adding heat
	- \blacksquare or by increasing pressure (ice is very atypical!)

Ice and Water (con't)

- To freeze water at 32 $^{\circ}$ F (0 $^{\circ}$ C),
	- destabilize water relative to ice
	- either by removing heat
	- or by decreasing pressure (water is very atypical!)
- Melting ice requires the latent heat of melting

Question 2

Can steam exist below 212 °F (100 °C)?

Water and Steam

- **Liquid water and gaseous steam**
	- \blacksquare can coexist over a broad range of temperatures
	- **but equilibrium steam density rises with temperature**
- To evaporate water,
	- destabilize water relative to steam
	- \blacksquare either by adding heat
	- \blacksquare or by reducing the density of the steam

Water and Steam (con't)

- **To condense steam,**
- destabilize steam relative to water
- either by removing heat
- \blacksquare or by increasing the density of the steam
- **Evaporating water requires latent heat of** evaporation

Boiling (Part 1)

- **Evaporation bubbles can form inside water**
	- Pressure in steam bubble depends on steam density When steam pressure exceeds ambient pressure,
	- steam bubble can survive and grows
- **Boiling occurs when**
	- **bubbles can nucleate (when seed bubbles form)** bubbles can grow via evaporation
- Need for latent heat stabilizes temperature

Boiling (Part 2)

- **Boiling temperature depends on ambient pressure**
	- Elevated pressure raises boiling temperature
	- Diminished pressure lowers boiling temperature
- \blacksquare Cooking uses boiling to set a stable temperature Foods cook fast at high pressures (sea level)
	- Foods cook slow at low pressures (high altitudes)

Question 3

Where do ice cubes go in a frostless freezer?

Ice and Steam

- **Solid ice and gaseous steam** ■ can coexist over a broad range of temperatures
	- **but equilibrium steam density rises with temperature**
- \blacksquare To sublime ice,
	- destabilize ice relative to steam
	- either by adding heat
	- \blacksquare or by reducing the density of the steam

Ice and Steam (con't)

■ To deposit steam,

- destabilize steam relative to ice
- either by removing heat
- \blacksquare or by increasing the density of the steam
- Subliming ice requires latent heats of melting *and* evaporation

Relative Humidity

- At 100% relative humidity,
	- \blacksquare (< 0 °C) ice is in phase equilibrium with steam
	- \bullet (> 0 °C) water is in phase equilibrium with steam
- \blacksquare Below 100% relative humidity,
	- \bullet (< 0 °C) ice sublimes (goodbye ice cubes!)
	- \blacktriangleright (> 0 °C) water evaporates
- Above 100% relative humidity,
	- \blacksquare (< 0 °C) frost forms
	- \blacksquare (> 0 °C) steam condenses

Is salt the only chemical that helps melt ice?

Effects of Impurities

- **Dissolved impurities stabilize liquid water,**
	- so its melting temperature drops and its boiling temperature rises
- \blacksquare These shifts are proportional to solute density, such as the density of salt ions in the water \blacksquare or the density of sugar molecules
- Any soluble material can help ice to melt
- **Insoluble materials don't cause ice to melt**

Summary about Water, Steam, and Ice

- **Phase transitions reflect relative phase stabilities**
- **Phases in equilibrium are equally stable**
- **T**E Temperature and pressure affect phase stabilities
- **Phase transitions usually require or release heat**

Clothing, Insulation, and Climate

Falling Balls 215 **Observations about Clothing, Insulation, and Climate**

- Clothing keeps you warm in cold places
- Clothing can keep you cool in very hot places
- **Insulation controls heat flow in various objects**
- **Insulation can be obvious, as in foam cups**
- \blacksquare Insulation can be subtle, as in special windows
- Greenhouse gases trap heat and warm the earth

Falling Balls 216 **4 Questions about Clothing, Insulation, and Climate**

- How does clothing control thermal conduction?
- How does clothing control thermal convection?
- How does insulation control thermal radiation?
- Why do greenhouse gases warm the earth?

How does clothing control thermal conduction?

Thermal Conductivity

- Heat naturally flows from hot to cold
- \blacksquare If one end of a material is hotter than the other
	- \blacksquare it will conduct heat from its hot end to its cold end
	- \blacksquare at a rate equal to the material's area
	- \blacksquare times the temperature difference
	- \blacksquare times the material's thermal conductivity
	- divided by the material's thickness.

heat flow = $\frac{\text{conductivity} \cdot \text{temperature diff} \cdot \text{area}}{111}$ thickness

Limiting Thermal Conduction

- Clothing is often intended to reduce heat flow
	- \blacksquare so it should use low-thermal conductivity materials e electrical insulators, not metals
	- \blacksquare materials that trap air—air is a very poor thermal conductor and it should use relatively thick materials
		- wool sweaters, down coats, heavy blankets
- Reducing exposed area is helpful when possible
- Reducing the temperature difference always helps

Question 2

How does clothing control thermal convection?

Natural Convection

- Heat naturally flows from hot to cold
- If one region of a fluid is hotter than the other \blacksquare those regions will also have different densities \blacksquare and buoyancy may cause the fluid to circulate.
- The rate of heat flow depends on
	- the heat capacity and mobility of the fluid
	- \blacksquare how quickly heat flows into or out of the fluid
	- how well buoyancy circulates fluid from hot to cold

Forced Convection

- Buoyancy isn't always effective at moving fluids
	- It fails when the hotter fluid is above the colder fluid
	- It fails when fluids experience large drag forces
	- \blacksquare It fails in certain awkward geometries
- **Stirring the fluid enhances heat flow**
	- Wind leads to faster heat transfer (wind chill)
	- Moving through air or water speeds heat transfer

Limiting Thermal Convection

- Clothing can reduce convective heat flow by preventing fluids from circulating
	- reducing temperature differences in the fluid
- \blacksquare The most effective clothing is thick and fluffy
	- The fluffiness traps air so that it can't convect
	- The thickness allows the surface temperature to drop to that of your surroundings so that there is no external convection
- A wind breaker minimizes forced convection

Question 3

How does insulation control thermal radiation?

Thermal Radiation

- **Materials all emit thermal radiation because** \blacksquare they contain electric charges
	- and thermal energy causes those charges accelerate.
	- \blacksquare Accelerating charges emit electromagnetic waves
- Hotter temperatures yield shorter wavelengths

Black Body Spectrum (Part 1)

- A surface's efficiency at absorbing and emitting thermal radiation is measured by its emissivity
	- 1 for a perfect emitter-absorber (black)
	- \blacksquare 0 for a nonemitter-nonabsorber (white, clear, shiny)
- The spectrum and intensity of a black surface's thermal radiation depend only on its temperature

Black Body Spectrum (Part 2)

- The black body spectrum of the sun is white light
- \blacksquare Objects hotter than about 500 °C glow visibly
- But even your skin emits invisible thermal radiation

Radiative Radiative Heat Transfer

■ Your skin radiates heat at a rate given by the Stefan-Boltzmann law:

power emissivity Stefan-Boltzmann constant

·temperature⁴ · surface area where temperature is an absolute temperature.

- Because of the $4th$ power, thermal radiation is extremely sensitive to temperature.
- **Black or gray objects with different temperatures** can exchange heat via thermal radiation

Limiting Thermal Radiation (Part 1)

- \blacksquare Insulation can reduce radiative heat flow by having surfaces with low emissivities reducing temperature differences between surfaces
- \blacksquare Emissivity depends on temperature
	- \blacksquare You can see high-temperature emissivity
		- \blacksquare black surfaces have high-temperature emissivities near 1 white, clear, shiny surfaces values near 0
	- You can't see low-temperature emissivity \blacksquare most materials have low-temperature emissivities near 1 \blacksquare conducting (metallic) surfaces can have values near 0

Limiting Thermal Radiation (Part 2)

- \blacksquare To reduce radiative heat flow
	- \blacksquare use conducting, low-emissivity surfaces
	- allow exterior surfaces to reach ambient temperature

Question 4

Why do greenhouse gases warm the earth?

Earth Equilibrium Temperature

- \blacksquare Earth receives thermal radiation from the sun
- **Earth emits thermal radiation into space**
- **Earth's temperature set by balance condition:**
	- Earth must emit heat at same rate as it absorbs heat
	- Earth's net radiative heat flow must be zero
	- Balance requires Earth's radiating surface is -18 °C.
- Atmosphere contributes to thermal radiation!
- Radiating surface is 5 km above ground level!

Effects of the Atmosphere

- Atmosphere has a temperature gradient air expands and cools is its altitude increases \blacksquare air temperature decreases 6.6 °C per km of altitude
- \blacksquare Atmosphere's average temperature
	- \blacksquare at 5 km is -18 °C
	- \blacksquare at ground level is 15 °C

Effects of Greenhouse Gases

- Greenhouse gases "darken" the atmosphere
	- \blacksquare Low-temperature emissivity of atmosphere increases
	- **Effective radiating surface moves to higher altitude**
	- Average temperature at ground level increases
- **Increasing greenhouse gases cause global warming**
- Greenhouse gases \blacksquare include H₂O, CO₂, nitrogen oxides, and methane
- don't include N_2 or O_2 , which are transparent to IR
- **Limiting greenhouse gases is critical to our future**

Summary about Clothing, Insulation, and Climate

- **Clothing and insulation limit heat transfer**
- \blacksquare They use materials with low thermal conductivities
- **They introduce drag to impede convection**
- \blacksquare They use low emissivities to reduce radiation
- Greenhouse gases affect Earth's thermal radiation
- **Those gases raise Earth's surface temperature**

Automobiles

Observations about Automobiles

- They burn gas to obtain their power
- **They are rated in horsepower and by volume**
- Their engines contain "cylinders"
- **They have electrical systems**
- They are propelled by their wheels

6 Questions about Automobiles

-
- How can an automobile run on thermal energy?
- How efficient can an automobile engine be?
- How is an automobile engine a heat engine?
- Why do cars sometime "knock?"
- How is a diesel engine different?
- What about the rest of the automobile?

Question 1

- How can an automobile run on thermal energy?
- Related questions:
	- Doesn't the Law of Entropy forbid this conversion?
	- Doesn't burning destroy gasoline's order completely?

Heat Engines

- An automobile engine is a "heat engine"
- A heat engine
	- allows heat to flow naturally from hot to cold
	- \blacksquare but diverts some and converts it into useful work
- **Converting heat to work decreases entropy**
	- but natural heat flow increases entropy, so
	- some can be converted without decreasing entropy.

Heat Pumps

- An air conditioner is a "heat pump"
- A heat pump
	- transfers some heat unnaturally from cold to hot \blacksquare while converting useful work into heat
- **Unnatural heat flow decreases entropy** \blacksquare but converting work to heat increases entropy, so some heat can flow without decreasing entropy.

Question 2

- How efficient can an automobile engine be?
- Related question:
	- What fraction of thermal energy can become work?

Efficiency

- Heat engines and heat pumps are both limited by the Law of Entropy
	- They cannot decrease the world's overall entropy Their efficiencies depend on temperature differences
	-
- As the temperature difference increases,
	- \blacksquare it becomes harder to move heat from cold to hot so a heat pump becomes less efficient,
	- and it becomes easier to move heat from hot to cold
	- so a heat engine becomes more efficient.

Question 3

How is an automobile engine a heat engine?

Internal Combustion Engine

- An internal combustion engine **burns** fuel and air in an enclosed space to produces hot burned gases.
- \blacksquare As it allows heat to flow to cold outside air
	- it converts some heat into useful work
	- \blacksquare and uses that work to propel a vehicle.

Four Stroke Engine

- **Induction Stroke: fill cylinder with fuel & air**
- Compression Stroke: squeeze mixture
- **Power Stroke: burn and extract work**
- **Exhaust Stroke: empty cylinder of exhaust**

Induction Stroke

- **Engine pulls piston out of cylinder**
- **Low pressure inside cylinder**
- **Atmospheric pressure pushes fuel and** air mixture into cylinder
- **Engine does work on the gases during** this stroke

Compression Stroke

- **Engine pushes piston into cylinder**
- **Mixture is compressed to high pressure** and temperature
- \blacksquare Engine does work on the gases during this stroke

Power Stroke

- Mixture burns to form hot gases
- Gases push piston out of cylinder
- Gases expand to lower pressure and temperature
- Gases do work on engine during this stroke

Exhaust Stroke

- **Engine pushes piston into cylinder**
- **High pressure inside cylinder**
- **Pressure pushes burned gases out of** cylinder
- **Engine does work on the gases during** this stroke

Ignition System

- **Electric spark ignites fuel and air mixture**
- **T** Two basic types of ignition
	- Classic: points and spark coil
	- \blacksquare Electronic: transistors and pulse transformer

Efficiency Limits

- Even ideal engine isn't perfect Not all the thermal energy can become work Some heat must be ejected into atmosphere
- \blacksquare However, ideal efficiency improves as
	- the burned gases become hotter
	- and the outside air becomes colder.
- Real engines never reach ideal efficiency

■ Why do cars sometime "knock?"

Knocking and Gasolines

- Compressing a gas increases its temperature
- During the compression stroke,
	- \blacksquare the fuel and air mixture becomes extremely hot \blacksquare and that mixture can ignite spontaneously
	- \blacksquare in a process called "knocking" or "preignition"
- \blacksquare To avoid knocking,
	- \blacksquare the car can reduce its compression ratio
	- \blacksquare or increase the ignition resistance of its fuel
- Higher "octane" fuels are simply harder to ignite

Diesel Engine

- It uses compression heating to ignite fuel ■ It squeeze pure air to high pressure/temperature, \blacksquare injects fuel between compression and power strokes, \blacksquare and fuel burns upon entry into the superheated air **Power stroke extracts work from burned gases**
- **Because of its higher compression ratio,** ■ its fuel burns to a higher final temperature and the diesel engine has a higher potential efficiency

Question 6

What about the rest of the automobile?

Vehicle Pollution

- **Incomplete burning leaves carbon monoxide** and hydrocarbons in the exhaust
- Accidental oxidization of nitrogen produces nitrogen oxides in the exhaust
- Diesel exhaust includes many carbonized particulates

Catalytic Converter

- **Platinum assists oxidization of carbon monoxide** and hydrocarbons to carbon dioxide and water
- Rhodium assists reduction of nitrogen oxides to nitrogen and oxygen.
- Catalysts supported on high specific surface structure in exhaust duct: catalytic converter

Transmissions

- **Provide mechanical advantage and coupling** control between the engine and the wheels
- Two basic types M anual: clutch and gears
	- Automatic: fluid coupling and gears

Manual Transmission

- Clutch uses friction to convey torque from engine to drive shaft
	- Opening clutch decouples engine and shaft
	- \blacksquare Closing clutch allows engine to twist shaft
- Gears control mechanical advantage

Automatic Transmission

- **Fluid coupling uses moving fluid to convey** torque to drive shaft
	- **Engine turns impeller (fan) that pushes fluid**
	- \blacksquare Moving fluid spins turbine (fan) and drive shaft
	- Decoupling isn't required
- Gears control mechanical advantage

Brakes

- Use sliding friction to reduce car's energy
- **Two basic types**
	- Drum: cylindrical drum and curved pads
	- \blacksquare Disk: disk-shaped rotor and flat pads
- **Brakes are operated hydraulically**
	- Pedal squeezes fluid out of master cylinder
	- Fluid entering slave cylinder activates brake

Summary about Automobiles

- **Cylinders expand hot gas to do work**
- Use the flow of heat from hot burned gases to cold atmosphere to produce work
- \blacksquare Energy efficiency is limited by thermodynamics
- **Higher temperatures increase efficiency**

Observations about Air Conditioners

- **They cool the air in a room**
- They emit hot air from their outside vents
- **They consume lots of electric power**
- They are less efficient on hotter days
- Some can be reversed so that they heat room air

5 Questions about Air Conditioners

- Why doesn't heat flow from cold to hot?
- Why does an air conditioner need electricity?
- How does an air conditioner cool room air?
- What role does the electricity play?
- How does an air conditioner heat outdoor air?

Question 1

Why doesn't heat flow from cold to hot?

Laws Governing Heat Flow

The laws of thermodynamics

- \blacksquare govern the flow of thermal energy
- e establish relationships between
	- \blacksquare disordered (thermal) energy and ordered energy heat and work

Law of Thermal Equilibrium

This law observes that there is a consistency about situations in which heat does not flow:

"If two objects are in thermal equilibrium with a third object, then they are in thermal equilibrium with each other."

Law of Conservation of Energy

This law recognizes that heat is a form of energy:

"The change in the internal energy equals the heat in minus the work out"

where:

- \blacksquare The internal energy is thermal $+$ stored energies
- The heat in is the heat transferred into object
- The work out is the external work done by object

Order versus Disorder

- Converting ordered energy into thermal energy
	- involves events that are likely to occur, so it \blacksquare is easy to accomplish and often happens
- \blacksquare Converting thermal energy into ordered energy involves events that are unlikely to occur, so it
- is hard to accomplish and effectively never happens
- Statistically, ordered always becomes disordered always

Entropy

- **Entropy** is the measure of an object's disorder Includes both thermal and structural disorders
- An isolated system's entropy never decreases,
- **but entropy can move or be transferred**
- **Entropy is NOT a conserved quantity!**

Law of Entropy

This law observes that entropy guides the time evolution of isolated systems:

"The entropy of a thermally isolated system never decreases"

More on the Law of Entropy

- According to the Law of Entropy:
	- Entropy of thermally isolated system can't decrease,
	- \blacksquare but entropy can be redistributed within the system
	- \blacksquare so part of the system can become hotter while another part becomes colder!
- **Exporting entropy is like throwing out trash!**

Natural Heat Flow

- One unit of thermal energy is more disordering to a cold object than to a hot object
- **Now M** When heat flows from hot object to cold object,
	- \blacksquare the hot object's entropy decreases
	- and the cold object's entropy increases,
	- so the overall entropy of the system increases
	- and the total energy is conserved
- **Laws of motion and thermodynamics satisfied**

Unnatural Heat Flow

- When heat flows from cold object to hot object,
	- the cold object's entropy decreases,
	- and the hot object's entropy increases
	- so the overall entropy of the system decreases
	- although the total energy is conserved

■ The Law of Entropy is violated

- To save that law, we need more entropy!
- Something ordered must become disordered!

Question 2

Why does an air conditioner need electricity?

Air Conditioners and Entropy

- Air conditioners
	- \blacksquare move heat from cold room air to hot outdside air and would cause entropy to decrease
	- \blacksquare were it not for the electric power they consume!
- **Electric energy is ordered,** so turning it into thermal energy increases entropy.
- Air conditioner satisfies the Law of Entropy by
- \blacksquare consuming electric energy (or some other order).

Heat Machines

- Air conditioners
	- use work to transfer heat from cold to hot
	- are a type of "heat pump"
- \blacksquare Automobiles
	- use flow of heat from hot to cold to do work
	- are a type of "heat engine"
- Heat pumps and heat engines obey the Law of Entropy!

Air conditioners (Part 1)

An air conditioner

- moves heat from cold room air to hot outside air, **against its natural flow, therefore**
- it must convert order energy into disordered energy so as not to decrease the world's total entropy!
- An air conditioner uses a "working fluid" to absorb heat from the cool room air
	- and release heat to the warm outside air

Air conditioners (Part 2)

- The air conditioner's indoor evaporator ■ transfers heat from room air to working fluid,
	-
- \blacksquare its outdoor condenser
	- \blacksquare transfers heat from working fluid to outside air
- and its outdoor compressor
	- \blacksquare does work on working fluid and produces entropy.

How does an air conditioner cool room air?

The Evaporator (Part 1)

- The evaporator is a long, wide metal pipe, a heat exchanger between air and working fluid.
- **The working fluid**
	- arrives as a high pressure, room temperature liquid but loses pressure passing through a constriction
	- and enters the evaporator as a low pressure liquid.
- **Loss of pressure destabilizes the liquid phase**
- The liquid working fluid begins to evaporate!

The Evaporator (Part 2)

- Working fluid evaporates in the evaporator It needs thermal energy to evaporate, so it absorbs heat from the room air.
- \blacksquare Working fluid leaves the evaporator as a low density gas near room temperature
	- and carries away some of the room's thermal energy
- Heat has left the room!

Question 4

What role does the electricity play?

The Compressor

- The compressor increases the gas's density
- **Working fluid**
	- **arrives as a low density gas near room temperature,**
	- \blacksquare has work done on it by the compressor,
	- and experiences a rise in temperature as a result.
- **Working fluid leaves the compressor**
	- as a hot, high density gas
	- and carries away electric energy as thermal energy.
- Ordered energy has become disordered energy!

Question 5

How does an air conditioner heat outdoor air?

The Condenser (Part 1)

- The condenser is a long, narrow metal pipe pipe is heat exchanger between air and working fluid
- The working fluid
	- \blacksquare arrives as a hot, high density gas
	- \blacksquare but begins to lose heat to the cooler outdoor air
- **Loss of heat destabilizes the gaseous phase,** so the gaseous working fluid begins to condense!

The Condenser (Part 2)

- Working fluid condenses in the condenser It must get rid of thermal energy to condense, so it releases heat into the outside air.
- \blacksquare Working fluid leaves the condenser
	- \blacksquare as high-pressure room-temperature liquid
	- having released some of the room's thermal energy
- \blacksquare Heat has reached the outside air!

Air Conditioner Overview

- **Indoor evaporator**
	- transfers heat from room air to working fluid
- Outdoor compressor
	- \blacksquare does work on fluid, raising density and temperature
- **Outdoor condenser**
	- transfers heat from working fluid to outside air, \blacksquare including thermal energy extracted from inside air
		- and thermal energy added by compressor.

Summary about Air Conditioners

- They pump heat from cold to hot
- **They don't violate thermodynamics**
- **They convert ordered energy to thermal energy**

Observations About Clocks

- **They divide time into uniform intervals**
- The measure time by counting those intervals
- Some clocks use motion to mark their intervals
- **Others clocks don't appear to involve motion**
- **They require energy to operate**
- **They have good but not perfect accuracy**

4 Questions about Clocks

- Why don't any modern clocks use hourglasses?
- Are all repetitive motions equally accurate?
- Why are some watches more accurate?
- How do clocks use harmonic oscillators?

Question 1

■ Why don't any modern clocks use hourglasses?

Non-Repetitive Motions: Timers

- **Devices that measure a single interval of time,** sandglasses,
	- water clocks,
	- and candles,
	- are fine as timers and were common in antiquity.
- **They are poorly suited to subdividing the day** \blacksquare because they require frequent operator intervention \blacksquare and that operator requirement limits their accuracy.
	-

Repetitive Motions: Clocks

- \blacksquare Devices that tick off time intervals repetitively, pendulums,
	- torsion balances,
	- \blacksquare and tuning forks,
- began appearing in clocks about 500 years ago.
- They are well suited to subdividing the day \blacksquare because they require no operator intervention
	- \blacksquare and their ticks can be counted mechanically.

About Repetitive Motions

- A device with a stable equilibrium
	- \blacksquare will move repetitively about that equilibrium, as long as it has excess energy.
- \blacksquare That repetitive motion sets a clock's accuracy,
- so it mustn't depend on externals such as
	- \blacksquare the temperature, air pressure, or time of day,
	- \blacksquare the clock's store of energy,
	- \blacksquare or the mechanism that observes the motion.

Question 2

Are all repetitive motions equally accurate?

Some Specifics

- A little terminology...
	- Period: time of full repetitive motion cycle
	- Frequency: cycles completed per unit of time
- Amplitude: peak distance away from motion's center In an ideal clock, the repetitive motion's period
- shouldn't depend on its amplitude

Harmonic Oscillators (Part 1)

- A harmonic oscillator
	- has a stable equilibrium
	- \blacksquare and a restoring force that's proportional to displacement from that equilibrium.
- Its period is independent of its amplitude!
- At a conceptual level, it always has
	- an inertial aspect (e.g., a mass)
	- and a spring-like restoring force aspect (e.g., a spring).

Harmonic Oscillators (Part 2)

- The period of a harmonic oscillator decreases as \blacksquare the mass aspect becomes smaller
	- \blacksquare and as the spring-like aspect becomes stiffer
- \Box Common harmonic oscillators include
	- \blacksquare a mass on a spring (the prototypical form)
	- \blacksquare a pendulum \blacksquare
	- a flagpole
	- a tuning fork

Question 3

Why are some watches more accurate?

The Limits to the Accuracy

- Clocks exhibit practical limits:
	- Sustaining motion can influence the period
	- Observing the period can influence the period
	- \blacksquare Sensitivity to temperature, pressure, wind, ...
- Clocks also exhibit fundamental limits:
	- Oscillation decay limits preciseness of period

Question 4

How do clocks use harmonic oscillators?

Pendulums (Part 1)

A pendulum is (almost) a harmonic oscillator ■ Its period is proportional to (length/gravity)^{1/2} \blacksquare and its period is (almost) independent of amplitude.

Pendulums (Part 2)

- \blacksquare A pendulum's spring-like restoring force
	- is caused by gravity
	- and is proportional to the pendulum's weight,
	- \blacksquare which is proportional to the pendulum's mass.
- **Increasing a pendulum's mass**
	- increases its inertial aspect,
	- \blacksquare increases the stiffness of its restoring force aspect,
	- and therefore has no effect on its period!

Pendulum Clocks

- **Pendulum is the clock's timekeeper**
- For accuracy, the pendulum's Е
	- \blacksquare pivot–to-center-of-gravity distance is ■ temperature stabilized and adjustable for variations in gravity.
	- It is streamlined to minimize air drag.
	- \blacksquare Its motion is sustained gently
	- \blacksquare and measured gently.
- The clock mustn't move or tilt.

Balance Ring Clocks

- \blacksquare A torsional spring causes a balance-ring 圛 harmonic oscillator to twist back and forth.
- Gravity exerts no torque about the ring's pivot and therefore has no influence on the period.
- **T** Twisting is sustained and measured with minimal effects on the ring's motion.

Quartz Oscillators

Crystalline quartz is a harmonic oscillator ■ The crystal's mass provides the inertial aspect and its body provides the spring-like aspect.

図

- \blacksquare Quartz's oscillation decay is extremely slow so its fundamental accuracy is very high.
- **Quartz** is piezoelectric
	- Its mechanical and electrical changes are coupled, so \blacksquare its motion can be induced and measured electrically.

Quartz Clocks

- The quartz tuning fork is excited electronically.
- The clock counts the vibrations electronically.
- The period of those vibrations is insensitive to gravity, temperature, pressure, and acceleration.
- **Quartz's slow vibration decay** gives it a very precise period.
- \blacksquare The crystal's tuning-fork shape yields a slow, efficient vibration.

Summary about Clocks

- **Most clocks involve harmonic oscillators**
- Amplitude independence aids accuracy
- Clock sustains and counts oscillations
- **Oscillators that lose little energy work best**

Musical Instruments

Observations about Musical Instruments

- **They can produce different notes**
- They must be tuned to produce the right notes
- They sound different, even on the same note
- **They require energy to create sound**

6 Questions about Musical Instruments

- Why do strings produce specific notes?
- Why does a vibrating string sound like a string?
- How does bowing cause a string to vibrate?
- Why do stringed instruments need surfaces?
- What is vibrating in a wind instrument?
- Why does a drum sound particularly different?

Question 1

Why do strings produce specific notes?

Oscillations of a Taut String

A taut string has

- a mass that provides its inertial aspect,
- a tension that provides its spring-like aspect,
- \blacksquare a stable equilibrium shape (straight line),
- and restoring forces proportional to displacement.
- A taut string is a harmonic oscillator
	- \blacksquare that oscillates about its equilibrium shape
	- with a pitch independent of amplitude (i.e., volume)!

A Taut String's Pitch

- A string's spring-like aspect stiffness is set by \blacksquare its tension and
	- \blacksquare its length (which affects its curvature).
- \blacksquare The string's inertial aspect is set by its mass.

Fundamental Vibration

- \blacksquare A string has a fundamental vibrational mode
	- in which it vibrates as a single arc, up and down,
	- \blacksquare with a displacement antinode at its center
- \blacksquare and a displacement node at each of its two ends.
	- Its fundamental pitch (frequency of vibration) is

冒

- proportional to tension^{$1/2$},
- \blacksquare proportional to 1/length,
- \blacksquare and proportional to $1/\text{mass}^{1/2}$.

Question 2 ■ Why does a vibrating string sound like a string?

A String's Harmonics (Part 1)

- A string can also vibrate as \blacksquare two half-strings (one extra antinode), \blacksquare three third-strings (two extra antinodes), and so on.
	-
- \blacksquare These higher-order vibrational modes have pitches higher than the fundamental mode \blacksquare and are called "overtones."
- Overtones with pitches that are integer multiples of the fundamental pitch are called "harmonics."
- A string's overtones are all harmonics!

A String's Harmonics (Part 2)

- \blacksquare First overtone involves two half-strings \blacksquare Twice the fundamental pitch: $2nd$ harmonic
	- \blacksquare One octave above the fundamental frequency
- \blacksquare Second overtone involves three third-strings Three times the fundamental pitch: $3rd$ harmonic An octave and a fifth above the fundamental
- Bowing or plucking a string excites a mixture of fundamental and harmonic vibrations, giving the string its characteristic sound

Question 3

How does bowing cause a string to vibrate?

Plucking and Bowing

Plucking a string transfers energy instantly

Bowing a string transfers energy gradually

- \blacksquare by doing a little work on the string every cycle \blacksquare so that excess energy builds up gradually.
-
- This gradual buildup is resonant energy transfer.
- **The string will vibrate sympathetically when** ■ another object vibrates at its resonant frequency \blacksquare and it gradually extracts energy from that object. \blacktriangleright

Question 4

■ Why do stringed instruments need surfaces?

Projecting Sound

- In air, sound consists of density fluctuations
	- Air has a stable equilibrium: uniform density Disturbances from uniform density make air vibrate
- \blacksquare Vibrating strings barely project sound **Exercise 2** because air flows around thin vibrating objects and is only slightly compressed or rarefied.
- Surfaces project sound much better \blacksquare because air can't flow around surfaces easily
	- \blacksquare and is substantially compressed or rarefied. \blacksquare

Question 5

What is vibrating in a wind instrument?

Oscillations of Air in a Tube

Air in a tube has

- \blacksquare mass that provides its inertial aspect,
- **pressures that provide its spring-like aspect,**
- \blacksquare a stable equilibrium structure (uniform density),
- and restoring forces proportional to displacement.
- Air in a tube is a harmonic oscillator \blacksquare that oscillates about its equilibrium shape with a pitch independent of amplitude (i.e., volume)!

Air in a Tube's Pitch

- Air column's springlike aspect stiffness is set by \blacksquare its pressure
	- and its length (which affects its pressure gradient).
- \blacksquare Air column's inertial aspect is set by its mass.

Fundamental Vibration Open-Open Column

- The air column vibrates as a single object \blacksquare with a pressure antinode at the middle of the column and a pressure node at each of the two open ends.
- \blacksquare Its fundamental pitch (frequency of vibration) is proportional to pressure^{$1/2$},
	- proportional to 1/length, |刘 村 and proportional to $1/\text{density}^{1/2}$.

Fundamental Vibration Open-Closed Column

- The air column vibrates as a single object \blacksquare with a pressure antinode at the closed end and a pressure node at the open end.
- \blacksquare The air column in a open-closed pipe vibrates \blacksquare like half the air column in an open-open pipe
	- \blacksquare and at half the frequency of an open-open pipe.

Air Harmonics (Part 1)

- \blacksquare In an open-open pipe, the overtones are at ■ twice the fundamental (two pressure antinodes),
	- three times the fundamental (three antinodes),
	- \blacksquare and so on (all integer multiples or "harmonics").
- \blacksquare In an open-closed pipe, the overtones are at
	- \blacksquare three times the fundamental (two antinodes),
	- \blacksquare five times the fundamental (three antinodes),
	- and so on (all odd integer multiples or "harmonics").

Air Harmonics (Part 2)

- **Blowing across the column tends to excite a** mixture of fundamental and harmonic vibrations
- **Examples**
	- Organ pipes
	- Recorders
	- **Flutes**
	- Whistles
- Reeds and horns also use a vibrating air column

Question 6

Why does a drum sound particularly different?

Surface Instruments

- \blacksquare Most 1-dimensional instruments
	- are harmonic oscillators
	- \blacksquare that can vibrate at half, third, quarter length, etc. and have harmonic overtones.
- Most 2- or 3- dimensional instruments
	- are harmonic oscillators
	- \blacksquare that have complicated higher-order vibrations
	- and have non-harmonic overtones.
- **Examples: drums, cymbals, bells**

Summary of Musical Instrument

- They use strings, air, etc. as harmonic oscillators
- Pitches are independent of amplitude/volume
- Tuned by tension/pressure, length, density
- **Often have harmonic overtones**
- **Project vibrations into the air as sound**

Observations about the Sea

- \blacksquare The sea is rarely calm; it is covered with waves
- The broadest waves travel fastest
- **Waves seem to get steeper near shore**
- **Naves** break or crumble near shore
- Waves bend gradually toward the shore

5 Questions about the Sea

- Why are there tides?
- How do giant tides develop?
- How does water in a wave move?
- How is a tsunami different from normal waves?
- Why do waves bend and break near shore?

Question 1

■ Why are there tides?

The Tides (Part 1)

- The moon's gravity acts on the earth,
- **but the moon's gravity is nonuniform**
- so the earth's oceans are pulled out of round
- and two tidal bulges form on opposite sides.

The Tides (Part 2)

- **These bulges move as the earth rotates, so**
	- each shore experiences almost two high tides per day and almost two low tides per day.
- \blacksquare The heights of these tides vary with latitude.
	- They are strongest near equator
	- and weakest near poles.

The Sun's Influence

- Sun's gravity affects the tides Strongest tides are when
- moon and sun are aligned \blacksquare Weakest tides are when
- moon and sun are at right angles

Tidal Resonance

- Water in a confined channel can slosh back and forth
	- It has a stable equilibrium (level)
	- and it experiences springlike forces.
- **It's another harmonic oscillator**
- \blacksquare Its period depends on its inertia and its stiffness
- If the sloshing time matches the tidal period, resonance occurs

Standing and Traveling Waves

- **Sloshing involves standing waves**
- Water in a finite container has standing wave modes, with nodes and antinodes that remain stationary.
- \Box Open water surf involves traveling waves
	- Water in an infinite sea has traveling wave modes,
	- with crests and troughs that move continuously.

Water Waves

- Sloshing involves deep water waves: all of the water moves back and forth
- Surface waves affect only water near the surface

Water's Motion (Part 1)

- Only the wave structure travels across the water.
- Surface water itself circles as the wave passes.
- The wave's crests are formed from local water.

- **Water's Motion (Part 2)**
- The circling is strongest at the surface, and becomes weak about 1/2 wavelength deep.

How is a tsunami different from normal waves?

Waves and Wavelength

- The longer the wavelength of surface wave,
	- \blacksquare the faster it travels,
	- \blacksquare the deeper it extends into the water,
	- \blacksquare and the more power it conveys for its amplitude.
- **T**sunamis are
	- very long wavelength, deep, and powerful waves.
	- They are also not strictly surface waves.

Why do waves bend and break near shore?

Breaking Waves

- **B** Shallow water distorts a wave's circling motion.
- As the water grows shallower, a surface wave slows down and its wavelength decreases.
	- \blacksquare Its crests grow taller and more tightly bunched.
- Waves break when the water can't form a crest
- **The slope of the seabed affects breaking**
	- If the seabed slopes gradually, there is rolling surf
	- If the seabed slopes sharply, plunging breakers occur

Changing Wave Speeds

Waves experience reflection

 Changes in wave speed cause partial reflection and the bigger the speed change, the more reflection

- \blacksquare Waves experience refraction
	- Changes in wave speed can redirect the wave
	- Waves bend toward shore as they slow in shallowing water

Summary of the Sea

- \blacksquare The moon's gravity causes the tides
- The tides can cause resonant motion in channels
- **Tidal resonances are standing waves**
- \blacksquare The open sea exhibits traveling waves
- Water moves in circles in those waves
- Waves break when the water gets too shallow