Air Conditioners

Turn off all electronic devices

Air Conditioners 2

Observations about Air Conditioners

- They cool the air in a room
- They emit hot air from their outside vents
- They consume lots of electric power
- They are less efficient on hotter days
- Some can be reversed so that they heat room air

Air Conditioners 3

5 Questions about Air Conditioners

- 1. Why doesn't heat flow naturally from cold to hot?
- 2. Why does an air conditioner need electricity?
- 3. How does an air conditioner cool room air?
- 4. What role does the electricity play?
- 5. How does an air conditioner heat outdoor air?

Air Conditioners 4

Question 1

Q: Why doesn't heat flow naturally from cold to hot? A: Such heat flow would violate the law of entropy

- There are 4 laws of thermodynamics that
 - govern the flow of thermal energy
 - relate disordered (thermal) energy and ordered energy
 - relate heat and work
- We will consider 3 of those laws

Air Conditioners 5

Law of Thermal Equilibrium

This law observes that there is a consistency about situations in which heat does not flow:

"If two objects are in thermal equilibrium with a third object, then they are in thermal equilibrium with each other."

Air Conditioners 6

Law of Conservation of Energy

This law recognizes that heat is a form of energy:

"The change in the internal energy equals the heat in minus the work out"

where:

- The internal energy is thermal + stored energies
- The heat in is the heat transferred into object
- The work out is the external work done by object

Order versus Disorder

- Converting ordered energy into thermal energy
 - involves events that are likely to occuris easy to accomplish and often happens
- Is easy to accomplish and often happens
 Converting thermal energy into ordered energy
- involves events that are unlikely to occur
- is hard to accomplish and effectively never happens
- Statistically, disordered never becomes ordered

Air Conditioners 8

Entropy

- Entropy
 - is the measure of a system's disorder
 - includes every type of disorder: energy and structure
- Entropy
 - never decreases in a system that is thermally isolated
 - can be rearranged within a system
 - can be transferred between systems
 - is NOT a conserved quantity!

Air Conditioners 9

Law of Entropy

This law observes that entropy guides the time evolution of isolated systems:

"The entropy of a thermally isolated system never decreases"

Air Conditioners 10

More on the Law of Entropy

- According to the Law of Entropy:
 - Entropy of thermally isolated system can't decrease
 - but entropy can be rearranged within that system
 - so part of the system can become colder as another part becomes hotter!
 - Entropy is "exported" from cold part to hot part
- Exporting entropy is like throwing out trash!

Air Conditioners 11

Natural Heat Flow

- One unit of thermal energy is more disordering to a cold object than to a hot object
- When heat flows from hot object to cold object,
 - hot object's entropy: ↓
 - cold object's entropy: ↑↑
 - so their total entropy: ↑
- Law of Entropy is satisfied

Air Conditioners 12

Hypothetical Energy and Entropy

Thermal Energy	Entropy
0	0
1	4
2	7
3	9
4	10

Unnatural Heat Flow

- When heat flows from cold object to hot object,
 - cold object's entropy: ↓↓
 - hot object's entropy: ↑
 - so their total entropy: ↓
- Law of Entropy would be violated,
 - unless we create of additional entropy!unless something ordered becomes disordered!

Air Conditioners 14

Question 2

Q: Why does an air conditioner need electricity? A: Electricity provides the necessary order

An air conditioner

- moves heat from cold (room air) to hot (outside air)
- would cause total entropy of world to decrease
- were it not for the electric power it consumes!It turns electric power into thermal power
- so the total entropy of world does not decrease

Air Conditioners 15

Heat Machines

- Air conditioners are <u>heat pumps</u>
 use work to transfer heat from cold to hot
- Automobiles are <u>heat engines</u>
- use flow of heat from hot to cold to do work
- Heat machines are governed by law of entropy

Air Conditioners 16

Air Conditioner

- An air conditioner uses a <u>working fluid</u> to
 - absorb heat from cold (room air)
 - release heat to hot (outside air)
- The evaporator (indoors)
- transfers heat from cold (room air) to working fluidThe condenser (outdoors)
 - transfers heat from working fluid to hot (outside air)

 - does work on working fluid and produces entropy.

Air Conditioners 17

Question 3

Q: How does an air conditioner cool room air?

- A: Its evaporator absorbs heat from the room air
- Evaporator is wide indoor pipe
- Working fluid
 - enters evaporator as cool low-pressure liquid
 - absorbs heat from room air and evaporates
 - leaves evaporator as a cool low-pressure gas
- Heat has been removed from the room!

Air Conditioners 18

Question 4

Q: What role does the electricity play?

- A: It powers the compressor and creates entropy
- Compressor increases gas's pressure and density
- Working fluid
 - enters compressor as a cool low-density gas
 - has work done on it by the compressor
 - leaves compressor as hot high-density gas
- Entropy has been created!

Question 5

- Q: How does an air conditioner heat outdoor air? A: Its condenser releases heat to the outdoor air
- Condenser is narrow outdoor pipe at high pressure
- Working fluid
 - enters condenser as hot high-pressure gas
 - releases heat to outdoor air and condenses
 - leaves condenser as a cool high-pressure liquid
- Heat has been delivered to the outdoors!

Air Conditioners 20 Air Conditioner Overview Fluid evaporates in evaporator absorbing heat from room air Compressor raises pressure evaporation → condensarion Fluid condenses in condenser releasing heat to outdoor air Constriction lowers pressure condensation → evaporation and the cycle repeats endlessly...

Air Conditioners 21

Summary about Air Conditioners

- They pump heat from cold to hot
- They don't violate thermodynamics
- They convert ordered energy to thermal energy