

Balloons 2

Observations about Balloons

- Balloons are held taut by the gases inside
- Some balloon float in air while others don't
- Hot-air balloons don't have to be sealed and most are not
- Helium balloons leak even when they are sealed

Balloons 3

5 Questions about Balloons

- 1. How does air inflate a rubber balloon?
- 2. Why doesn't the atmosphere fall or collapse?
- 3. Why does the atmosphere push up on a balloon?
- 4. Why does a hot air balloon float in cold air?
- 5. Why does a helium balloon float in air?

Balloons 4

Question 1

Q: How does air inflate a rubber balloon? A: Its pressure pushes the balloon's skin outward

- Air is a gas: individual atoms and molecules
- Air has pressure: it exerts a force on a surface
- Pressure inside a balloon is greater than outside
- Total pressure forces on balloon skin are outward
 - Balloon is held taut by those outward pressure forces

Balloons 5

Air and Pressure

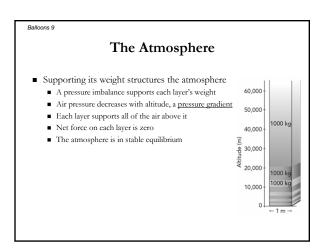
- Air consists of individual atoms and molecules
 Thermal energy keeps them separate and in motion
 - Air particles bounce around in free fall, like tiny balls
- Air particles transfer momentum as they bounce
 - Each momentum transfer involves tiny forces
 - A surface exposed to air experiences a force
 - The force on a surface is proportional to its area
 - The force per area is the air's <u>pressure</u>

Balloons 6

Pressure Imbalances

Balanced pressures exert no overall force

- Pressure forces on two sides of a surface are balancedOverall pressure force on that surface is zero
- Unbalanced pressures exert an overall force
 - Pressure forces on two sides of a surface don't balance
 - Overall pressure force on that surface is non-zero
 - Imbalance pushes surface toward the lower pressure
- Unbalanced pressures affect the air itselfThe air is pushed toward lower pressure


Balloons 7

Question 2

Q: Why doesn't the atmosphere fall or collapse? A: A gradient in its pressure supports its weight

- Air has a <u>density</u>: it has mass per volume
- Air's pressure is proportional to its density
- Air's density gives it a weight per volume
- The atmosphere is in equilibrium
 - Its density and pressure decrease with altitudeThe resulting pressure imbalances support its weight

Balloons 10

Balloons 12

Question 3

Q: Why does the atmosphere push up on a balloon? A: Its pressure gradient pushes the balloon upward

- Because of atmospheric structure, air pressure is
 - stronger near the bottom of a balloon,
 - weaker near the top of the balloon,
 - so the air pushes up harder than it pushes down,
 - and this imbalance yields an upward <u>buoyant force</u>
- The atmosphere pushes upward on the balloon!

Balloons 11

Archimedes' Principle

A balloon immersed in a fluid experience an upward buoyant force equal to the weight of the fluid it displaces

Question 4

Q: Why does a hot air balloon float in cold air? A: It weighs less than the air it displaces

- As the temperature of air increases, its particles
 - move faster, bounce harder, and bounce more often
 - contribute more to air's pressure
- A balloon filled with hot air at ordinary pressure
 contains fewer particles than the air it displaces
 - weighs less than the air it displaces
 - experiences a buoyant force that exceeds its weight

Balloons 13

An Aside About Temperature

- Air's temperature on a conventional scale is
 related to average thermal kinetic energy per particle
- Air's temperature on an absolute scale is
 - proportional to average thermal kinetic energy per part.
- SI unit of absolute temperature: kelvins or K
 - 0 K is absolute zero: no thermal energy available
 - Step size: 1 K step same as 1 °C step
 - Room temperature is approximately 300 K

Balloons 14

Question 5

Q: Why does a helium balloon float in air? A: It weighs less than the air it displaces

- Compared with air, the particles in helium gas
 are lighter, but move faster and bounce more often
 contribute just as much to pressure
- A balloon filled with helium at ordinary pressure
 - contains as many particles as the air it displaces
 - weighs less than the air it displaces
 - experiences a buoyant force that exceeds its weight

Balloons 15

Pressure and Particle Density

- <u>Particle density</u>: particles per volume
- Particles in a gas contribute equally to pressure
 - lower-mass particles move faster and bounce more,
 - so all the effects of particle mass cancel out
- Gases with equal particle densities and equal temperatures have equal pressures

Balloons 16

The Ideal Gas Law

is a summary relationship for gases:

pressure = Boltzmann constant particle density

- It assumes perfectly independent particles
- While real gas particles aren't perfectly independent, this law is a good approximation for real gases.

Balloons 17

Summary about Balloons

- A balloon will float if its average density is less than that of the surrounding air
- A hot-air balloon has a lower particle density and a lower density than the surrounding air
- A helium balloon has the same particle density but a lower density than the surrounding air