

Ramps 2

Observations About Ramps

- It's difficult to lift a heavy wagon straight up
- It's easer to push a heavy wagon up a ramp
- How hard you must push depends on the ramp's steepness
- The gentler the slope of the ramp,
- the smaller the push you must exert on the wagon
 - the longer the distance you must push the wagon to raise it upward

Ramps 3

5 Questions about Ramps

- 1. Why doesn't a wagon fall through a sidewalk?
- 2. Why does a sidewalk perfectly support a wagon?
- 3. How does a wagon move as you let it roll freely on a ramp?
- 4. Why is it harder to lift a wagon up than to lower a wagon down?
- 5. Why is it easier to pull a wagon up a ramp than to lift it up a ladder?

Ramps 4

Question 1

Q: Why doesn't a wagon fall through a sidewalk? A: The sidewalk pushes up on it and supports it.

The sidewalk and the wagon cannot occupy the same space

- The sidewalk exerts a support force on the wagon that
 - prevents the wagon from penetrating the sidewalk's surface
 - acts perpendicular to the sidewalk's surface: it is directed straight up
 - balances wagon's downward weight

Ramps 5

Question 2

Q: Why does a sidewalk perfectly support a wagon?

A: The sidewalk and wagon negotiate by denting and undenting.

The wagon and sidewalk dent one another slightly

- the more they dent, the harder they push apart
- the wagon accelerates up or down in response to net force
- the wagon bounces up and down during this negotiation

The wagon comes to rest at equilibrium-zero net force

Ramps 6

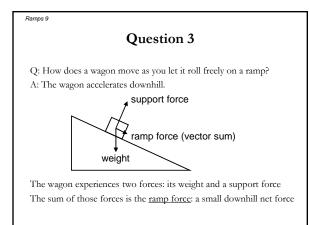
The Wagon and Sidewalk Negotiate

If the wagon and sidewalk dent one another too much,

- each one pushes the other away strongly
- the wagon accelerates away from the sidewalk
- If the wagon and sidewalk dent one another too little,
 - each one pushes the other away weakly (or not at all)
 - the wagon accelerates toward the sidewalk

If the wagon and sidewalk dent one another just right,

the wagon is in equilibrium (zero net force)


Ramps 7

Newton's Third Law

For every force that one object exerts on a second object, there is an equal but oppositely directed force that the second object exerts on the first object. Ramps 8

Misconception Alert

The forces two objects exert on one another must be equal and opposite, but each force of that <u>Newton's third law pair</u> is exerted on a different object, so those forces do not cancel one another.

Pushing the wagon up the Ramp

To start the wagon moving uphill

- push wagon uphill more than the downhill ramp force
- net force is uphill, so wagon accelerates uphill

To keep the wagon moving uphill

- push wagon uphill just enough to balance ramp force
- wagon continues uphill at constant velocity

To stop the wagon moving uphill,

- push wagon uphill less than the downhill ramp force
- net force is downhill, so wagon accelerates downhill

Ramps 11

Question 4

Q: Why is it harder to lift a wagon up than to lower a wagon down? A: You do work on the wagon when you lift it.

The wagon does work on you when you lower it.

- <u>Energy</u> a conserved quantity
 - it can't be created or destroyed
 - it can be transformed or transferred between objects
 - is the capacity to do work
- <u>Work</u> mechanical means of transferring energy
 - work = force \cdot distance

(where force and distance are in same direction)

Ramps 12

Transfers of Energy

Energy has two principal forms

- <u>Kinetic energy</u> energy of motion
 <u>Potential energy</u> energy stored in forces
- Your work transfers energy from you to the wagon
- Your chemical potential energy decreases
- rour circuital potential energy decreases
 wagon's gravitational potential energy increases

Ramps 13

Question 5

Q: Why is it easier to pull a wagon up a ramp than to lift it up a ladder?

A: On the ramp, you do work with a small force over a long distance. On the ladder, you do work with a large force over a small distance.

For a shallow ramp: work = Force \cdot Distance

For a steep ramp: $work = Force \cdot Distance$

For a ladder: work = $Force \cdot Distance$

Ramps 14

Mechanical Advantage

- Mechanical advantage is doing the same work, using a different balance of force and distance
- A ramp provides mechanical advantage
 - You lift wagon with less force but more distance
 - Your work is independent of the ramp's steepness

Ramps 15

Summary about Ramps

- Ramp reduces the force you must exert to lift the wagon
- Ramp increases the distance you must push to lift the wagon
- You do work pushing the wagon up the ramp
- The ramp provides mechanical advantage
 - It allows you to push less hard
 - but you must push for a longer distance
 - Your work is independent of ramp's steepness