Water Distribution 1

Water Distribution

Water Distribution 2

Observations about Water Distribution

- Water is pressurized in the pipes
- Higher-pressure water can spray harder and higher
- Water is often pressurized by pumps
- Water is often stored in tall water towers

Turn off all electronic devices

Water Distribution 3

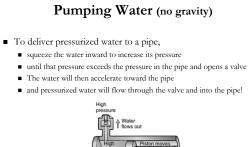
4 Questions about Water Distribution

- 1. Why does water move through level pipes?
- 2. How can you produce pressurized water?
- 3. Where does the work you do pumping water go?
- 4. As water flows, what happens to its energy?

Water Distribution 4

Question 1

Q: Why does water move through level pipes? A: It exhibits inertia and it accelerates toward lower pressure


- Water, like all fluids, obeys Newton's laws
 - When water experiences zero net force, it coasts
 - When water experiences a net force, it accelerates
 - Pressure imbalances exert net forces on portions of water
 - Water accelerates toward lower pressure

Water Distribution 5

Question 2

- Q: How can you produce pressurized water?
- A: Push inward on the water, using a surface
- To pressurize water, confine it and squeeze inward on it
 - As you push inward on the water,
 - it pushes outward on you (Newton's third law).
 - Water's outward push is produced by its pressure,
 - so the water's pressure rises as you squeeze it harder.
- Like all liquids, water is nearly incompressible
 - Its volume remains constant as its pressure increases

Water Distribution 6

Water Distribution 7

Pumping Requires Work

- You do work as you pump water into the pipe
 - You squeeze the water inward the force (pressure · area),
 - and the water moves inward the distance.
 - The work you do pumping water is:
 - work = force \cdot distance
 - work = (pressure \cdot area) \cdot distance
 - work = pressure \cdot (area \cdot distance)
 - $work = pressure \cdot volume$
- The pressurized water carries your work with it
- We'll call this work pressure potential energy (PPE)

Water Distribution 8

Question 3

- Q: Where does the work you do pumping water go? A: To the water at the delivery-end of the pipe
- Pressure potential energy is unusual because
- it's not really stored in the pressurized water,
 - it's promised by the water's pressure source.
 - If the pressure source vanishes, so does pressure potential energy.
- In steady state flow (SSF),
 - which is steady flow in motionless surroundings,
 - promised energy is as good as stored energy,
 - so pressure potential energy (PPE) is meaningful.

Water Distribution 3 Question 4 Question 5 Question 5 Question 6 Question 6

Water Distribution 10

Gravity Causes Pressure Gradients

- Like air in the atmosphere, water in a pipe
 - has a density and a weight per volume
 - has a pressure gradient when it is at equilibrium
 - Its pressure decreases with altitude
 - That pressure gradient supports its weight
- Water has gravitational potential energy (GPE)
 - Its GPE increases with altitude

Water Distribution 11 Energy and Bernoulli (with gravity)

- Water flowing along a single streamline in SSF
 - has PPE, KE, and GPE,
 - must have a constant total energy per volume,and obeys Bernoulli's equation (with gravity)
 - and obcys bemouin's equation (with gravity

 $\frac{1}{Volume} + \frac{1}{Volume} + \frac{1}{Volume} = \frac{Volume}{Volume}$

Water Distribution 12

Energy Transformations (part 1)

- As water flows upward in a uniform pipe,
 - its speed can't change (a jam or a gap would form),
 - so its gravitational potential energy increases
 - and its pressure potential energy decreases.
- As water flows downward in a uniform pipe,
 - its speed can't change,
 - so its gravitational potential energy decreases
 - and its pressure potential energy increases.

Water Distribution 13

Energy Transformations (part 2)

- As water rises upward from a fountain nozzle,
 - its pressure stays constant (atmospheric),
 - so its gravitational potential energy increases
 - and its kinetic energy decreases.
- As water falls downward from a spout,
 - its pressure stays constant (atmospheric),
 - so its gravitational potential energy decreases
 - and its kinetic energy increases.

Water Distribution 14

Energy Transformations (part 3)

- As water sprays horizontally from a nozzle,
 - its height is constant,
 - so its kinetic energy increases
 - and its pressure potential energy decreases.
- As a horizontal stream of water hits a wall,
 - its height is constant,
 - so its kinetic energy decreases
 - and its pressure potential energy increases.

Water Distribution 15

Summary about Water Distribution

- Water's energy remains constant during SSF
- Water's energy changes form as it
 - flows upward or downward inside pipes,
 - rises or falls in open sprays,
 - and shoots out of nozzles or collides with objects.
- Water distribution can driven by
 - pressurized water (PPE)
 - elevated water (GPE)
 - fast-moving water (KE)