Bumper Cars 1

Bumper Cars

Turn off all electronic devices

Bumper Cars 2

Observations about Bumper Cars

Moving cars tend to stay moving Changing a car's motion takes time Impacts alter velocities and angular velocities Cars often appear to exchange their motions The fullest cars are the hardest to redirect The least-full cars get slammed during collisions

Bumper Cars 3

5 Questions about Bumper Cars

- 1. Does a moving bumper car carry a force?
- 2. How is momentum transferred from one bumper car to another?
- 3. Does a spinning bumper car carry a torque?
- 4. How is angular momentum transferred from one bumper car to another?
- 5. How does a bumper car move on an uneven floor?

Bumper Cars 4

Question 1

Q: Does a moving bumper car carry a force? A: No, the bumper car carries momentum.

Momentum is a conserved vector quantity

- cannot be created or destroyed, but it can be transferred
- has an amount <u>and a direction</u> (unlike energy)
- has no potential form and cannot be hidden (unlike energy)
- combines bumper car's inertia and velocity

 $momentum = mass \cdot velocity$

Bumper Cars 5

Question 2

Q: How is momentum transferred from one bumper car to another? A: The bumper cars push on one another for a period of time.

Bumper cars exchange momentum via impulses

impulse = force \cdot time

When car_1 gives an impulse to car_2 , car_2 gives an equal but oppositely directed impulse to car_1 .

- Individual momenta change as the result of an impulse
- The total momentum doesn't change
- Car with least mass changes velocity most, so the littlest riders get pounded

Bumper Cars 6

Question 3

Q: Does a spinning bumper car carry a torque?

A: No, the bumper car carries angular momentum

Angular momentum is a conserved vector quantity

- cannot be created or destroyed, but it can be transferred
- has an amount <u>and a direction</u> (unlike energy)
- has no potential form and cannot be hidden (unlike energy)

 combines bumper car's rotational inertia and velocity angular momentum = rotational mass · angular velocity Bumper Cars 7

Question 4

Q: How is angular momentum transferred from one bumper car to another?

A: The bumper cars twist one another for a period of time.

Bumper cars exchange angular momentum via angular impulses angular impulse = torque · time

When car_1 gives an angular impulse to car_2 , car_2 gives an equal but oppositely directed angular impulse to car_1 .

- Individual angular momenta change as the result of an angular impulse
- The total angular momentum doesn't change
- Car with least rotational mass changes angular velocity most.

Bumper Cars 8

Rotational Mass can Change

Object's mass cannot change

- Its velocity can change only if its momentum changes
- This observation underlies Newton's first law of translational motion
- Object's rotational mass cannot change if it is rigid
 - Its angular velocity can change only if its angular momentum changes
- This observation underlies Newton's first law of rotational motion
- If an object's shape can change, so can its rotational mass!
 - Its angular velocity can change without its angular momentum changing
 - Newton's first law of rotational motion does not apply

Bumper Cars 9

Question 5

Q: How does a bumper car move on an uneven floor?

A: It accelerates in the direction that reduces its potential energy as quickly as possible

Forces and potential energies are related!

- A bumper car accelerates in the direction that reduces its total potential energy as quickly as possible
- The bumper car accelerates opposite to the <u>potential energy gradient</u>
- On an uneven floor, that is down the steepest slope

Bumper Cars 10

Summary about Bumper Cars

During collisions, bumper cars exchange

- momentum via impulses
- angular momentum via angular impulses

Collisions have less effect on

- cars with large masses
- cars with large rotational masses